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Abstract

Let &£ be a regular Dirichlet form on L?(X,m), u a positive Radon measure
charging no sets of zero capacity and ® an N-function. We prove that the Sobolev-
Orlicz inequality ||f2||L‘I>(X,M) < C&f] for every f € D(E) is equivalent to a
capacitary-type inequality. Further we show that if D(€) is continuously embedded
into L?(X, ut), the latter one is equivalent to some integrability condition, which
is nothing else but the classical uniform integrability condition if u is finite. We
also prove that a Sobolev-Orlicz inequality for £ yields a Nash-type inequality and
if further g = m it yields the ultracontractivity of the corresponding semigroup.
After, in the spirit of Sobolev-Orlicz inequalities, we derive criteria for D(€) to be
compactly embedded into L%(p), provided p is finite. As an illustration of the the-
ory, we shall relate the compactness of the latter embedding to the discreteness of
the spectrum of the time changed Dirichlet form and shall derive lower bounds for
its eigenvalues in term of ®.
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1 Introduction

In this paper we continue our investigations which we began in [BA04b, BA05] devoted
to give necessary and sufficient conditions for the validity of Sobolev-type inequalities (or
more generally trace inequalities) for regular Dirichlet forms and give criteria for their
domain to be compactly embedded into some Lebesgue space.

Here is a short description of our program: Let X be a locally compact separable metric
space and m a positive Radon measure on X whose support is X. Let £ be a regular
Dirichlet form on L? := L*(X,m) and u a Borel measure on X charging no subsets of
zero capacity. It is well known that the Sobolev’s inequality (SI for short)

(SI): (/X |f|%d/,L)K < CE(f,f), forevery f € D(E), 0 <k <1,
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may be extended to a much more general inequality, namely Sobolev-Orlicz inequality.
On the other hand the Sobolev’s inequality (SI) is equivalent to (See [AH96, BA04b,
BA05, FU03a, Maz85]) the capacitary inequality (CI'):

(Ccr'y: (/,L(IX’))K < CCap(K),for every compact K.
Now substituting (SI) by the Sobolev-Orlicz inequality (SOI for short):
(SOI) || fllzey < CES, f) for every f € D(E),

suggests to replace (CI') by an appropriate capacitary inequality involving the conjugate
function of ®, . This was done, first, by Mazja [Maz85, Satz 4.2] for the gradient energy
form on R? and by Carron for the energy form on a nice Riemannian manifold [Car97]
with @ = m.

Also Kaimanovich [Kai92] extends the result to the case where the transition kernel of
the Dirichlet norm is a probability measure and y = m.

One of our aims in this work is to establish an equivalence between (SOI) and a
capacitary-type inequality for general Dirichlet forms. This step is an extension of [BA04b,
Theorem 3.1],[FU03a, Theorem 3.1] on one hand and of [Maz85, Satz 4.2] and [BCLSC95,
Theorem 10.4] on the other hand (where the case ¢ = m is considered). Using this equiv-
alence we show that if I, is bounded (defined below), then both (SOI) and a capacitary
inequality are equivalent to some uniform integrability condition (see Theorem 3.2) which
reduces to the usual one if p(X) < oco.

Further we prove that a (SOI) with an N-function ® leads to a Nash-type inequality
and if moreover ;1 = m the latter one leads to the ultracontractivity of the semigroup
e~ for every t > 0, i.e. e7' maps continuously L' into L™ for every ¢ > 0. This result
will play a central role for deriving lower bounds for the eigenvalues in case where H has
a discrete spectrum.

Then we derive necessary and sufficient conditions for the domain of the Dirichlet form,
D(E), to be compactly embedded into some L?(p) for finite measures p. Precisely, relying
on establishing a relationship between the compactness of I, and the compactness of the
trace of £ on the support of p, we shall prove that the compactness of the embedding

L= (D(€),&) —» LX), f s f. (1.1)

is equivalent to a (SOI) with some N-function ®, provided y is finite.

The scope of (SOI) in the special case y = m was extensively studied and its importance
is well known. However, we stress that the general case is still of great importance,
especially for the study of the perturbed Dirichlet form £+ pt —p~ [Bra0l, BA0O4a, St094]
(localization of the essential spectrum, estimate of the number of the negative eigenvalues).
It is of great interest as well, for the study of the trace of the Dirichlet form & on the
support of the measure p as done by Fukushima-Uemura [FU03a] and as we shall illustrate
in the fourth and last paragraphs.



2 Preliminaries

For a positive Radon measure g on X and 1 < p < oo, we shall denote by LP(u) the
usual (real) Lebesgue space of Borel measurable (equivalence classes) of functions on X
equipped with the usual norm || - [|r(,). If 4 = m, the space LP(m) will be denoted simply
by L? further the notation a.e. means m-a.e.. The space of continuous functions with
compact support in X will be denoted by C.(X).

Let £ be a regular Dirichlet form defined in L?. We denote by D(E) the domain of £.
By the regularity we mean that D(E) N C.(X) is dense in D(&) with respect to the norm
Ea 1= E+ af-, )2 for some o > 0 and dense in C.(X) with respect to the uniform norm.
The positive selfadjoint operator associated to &€ via the representation theorem is denoted

by H and is defined as follows:

1

D(H?) = D(£), E[f] = E(f.f) = (H?f, H [ (21)
For every open subset  C X and every a > 0 we define [FOT94, p. 61]
Lo:={feDE), f>1ae onQ} (2.2)

and

) infrep, Elf] i Lo #0
Cap, () := { € Yoo i Lo

For an arbitrary subset 2 C X we define

Cap,(Q) = inf  Cap,(w)- (2.3)
QCw, w open

It is known that Cap,, defines a capacity on X. For o = 1 we shall denote the correspond-
ing capacity by Cap.
A property is said to be satisfied quasi-everywhere (q.e. for short) if it holds true up to a
set of zero capacity. A function f is said to be quasi-continuous (q.c.) if for every e > 0
there is an open subset O such that Cap(O) < € and the restriction of f to X \ O is
continuous.
We recall (cf. [FOT94, p. 65]) that the regularity property of Dirichlet forms implies
that every element of D(&) can be corrected so as to become q.c.. In the sequel we shall
implicitly assume that the elements of D(&) has been corrected in this way. Let us observe
that together with Urysohn’s lemma the regularity property implies that every compact
subset has finite capacity.
From now on we assume that all measures under consideration are Radon measures and
they do not charge subsets of zero capacity, we also denote by I, the mapping:

L= (D(€),&) — L), frs f. (2.4)

For the convenience of the reader we also recall some facts about Orlicz spaces. A
function @ : [0,00) — [0,00) is called a Young’s function if it is convex, ®(0) = 0 and
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lim, oo ®(2) = 00. A Young’s function is called an N-function if moreover ®(x) = 0 if
and only if @ = 0,lim, 0 ®(2)/2 = 0 and lim,, ®(2)/2 = .
To every Young’s function ®, one can associate an other Young’s function ¥, which is
defined by

U(z) =sup {yz — B(y) : y > 0}, « >0,

The function ¥ is called the complementary function of ®. From the very definition the
following Young’s inequality holds true

ry < @(z) + ¥(y), =,y > 0.

We also note that if ® is an N-function then ¥ also is.
The following important inequality, valid for N-functions, (see [RR91, p.14]) will be used
later:

z <@ (2)T N (z) < 22, x> 0. (2.5)

For a positive Radon measure ; and a Young’s function ® the Orlicz space L® () :=
L®(X, i) is the space of y-measurable (equivalence classes) of functions f on X such that

| Fllpe 0 = sup{\/ngdu\ r /X‘I’(Igl)du <1} < oo (2.6)

It is well known that (L(I)(/,L), || - ||L‘I’(u)> is a Banach space whose norm is equivalent to
the Luxembourg norm:

Il i=int (3> 05 [ a0 <1}, 27)

X

Precisely we have

1 Fll@) < [1fllzeqy < 2l fll@), ¥V F € L(n). (2.8)
We also recall that if ® is an N-function and B is a Borel subset then (see [RR91, p.79])
115llpe 0y = w(B)T(1/u(B)). (2.9)

For Orlicz spaces the Holder’s inequality reads as follows:
[ 1ol < 180 lglv (2.10)

Let us emphasize that in some places (and only in some!) we would pay no attention
to the constants appearing in the inequalities. So that we shall denote them all by C.

3 Sobolev-Orlicz inequalities and their consequences

In this paragraph we shall be concerned with two questions: First, show how a Sobolev-
Orlicz inequality, an isocapacitary-type inequality and some uniform integrability condi-
tion are equivalent to each other.

Second, which consequences can one get from the (SOI)? Namely we shall prove that
a (SOI) with an N-function yields a Nash-type inequality which, in turns, implies the
ultracontractivity of the related semigroup.



3.1 Sobolev-Orlicz inequalities: necessary and sufficient condi-
tions

The following generalizes both [Maz81, Satz 3.1], [Kai92, Theorem 3.1] and [BA05, The-

orem 3.1].

Theorem 3.1. Let ® be an N-function. Then the following assertions are equivalent:
i) There is a constant Cy such that

1F%Le ) < Ci&i[f], ¥ f € D(E). (3.1)
ii) There is a constant Cy such that
(CD): u(K)T~(1/u(K)) < CyCap(K), VK compact.
Moreover the constants may be chosen so that Cy < Cy < 4Cs.

Let us stress that if the Dirichlet form £ is transient then the same result holds true
if on changes £ by £ and the 1-capacity by the corresponding one.

Proof. 1)=ii): Follows directly from (2.9) and the definition of the capacity.
ii)=1): The main input in the proof of this implication is the ‘strong capacitary inequality’

(see [BAO5, FUO3a)):

| canllsl = yaw) <asilfl, v £ e D&, (3:2)

Observe that by the regularity property of &, it suffices to prove inequality (3.1) on
D(E)NC.(X). Further by Markov property for £ i.e. E[|f]] < E[f], Vf € D(E), it suffices
to prove it for positive elements from D(&) N C.(X).

Let f be such a function. Then by definition and use of Fubini’s theorem we get

£y = SUP{\/fng\ / (lg) du <1}
s ] [ /{m}gdmd(t>\:/X\If<|g|>dug1}.

For t > 0, set E;, := {f >t} . From the latter inequality we derive

1P le < / (sup {| / Lig du| / (gl) d < 1}) d(?) = / 11| d(22)

= [T e aguE ) < 0. [ coptE de
S 40251[f]7

where the latter inequality is obtained from inequality (3.2).



Next we shall use Theorem 3.1 to prove that for measures p such that I, is bounded,
the (SOI) and (CI) are equivalent to the fact that the unit ball of D(&) is nearly L*(u)-
uniformly integrable. Here we say that a family F of Borel measurable functions is
LP(p)-nearly uniformly integrable (1 < p < o0) if

(NUI): lim sup/ |f|P dp = 0. (3.3)
Ao feF HIfIza)

If the measure p is finite, the latter definition reduces to the classical definition of uniform

integrability [DS58].

For this goal we need:

Lemma 3.1. Assume that a family F is L'(p)-nearly uniformly integrable. Then there
s a Young’s function ® such that

sup/ O(f)dp < . (3.4)
JfeFJX
If further u is finite, then ® may be chosen so as to be an N-function.

For p(X) < oo the latter lemma is known as ’la Vallée Poussin’ criterion.

Proof. The proof runs as in the case yu(X) < oo [RR91, DM75]. We shall reproduce it
just for the convenience of the reader.

Let (M) be a sequence of real numbers such that 0 < A, < A,y1 — oo and Mg <
C < co0. By the assumption (NUI), we may assume that

A du) < .
(2 /{IfIZ/\n}f ) < o0

n=0

For if not there is always a subsequence of (\,) which satisfies the latter condition.

Set ¢(t) := ano 2" 1n, 2ny0) (1) and

B(t) 1= /Ot (s) ds.

Then @ is a Young’s function. We shall show that ® is the sought function. Observe that
it suffices to prove (3.4) for positive f € F. Let f be such a function. Then

[ee)

[ wpran - > /{Angdwl}@(f)d/«bSZ‘I’(%H)/«L{M§f<An+1}

n=0

< Z ((I)()‘n+1) - (I)()‘n))/“b{f > )‘n} = ZQn()‘n-I—l - )‘n)ﬂ{f > )\n}

n=0

< CZQ”/ fdp < oo, uniformly in f
- {

n=0 f2An}

If o is finite, we modify ® on the interval [0, Ag] so as to get an N-function. Whence the
norm of the Orlicz space associated to the modified function is equivalent to the first one.
and the proof is completed. O



From now on we denote by B the unit ball of (D(E), & ).

Theorem 3.2. Assume that I, is bounded. If (SOI) holds true with some N-function
then B is L*(u)-nearly uniformly integrable.
Conversely if B is L*(pu)-nearly uniformly integrable, then there is a Young’s function ®

for which (SOI) is satisfied.

Proof. 1)=ii): Since I, is bounded by [BA04b, Theorem3.1] there is a constant C such
that

p(K) < CCap(K), for all K compact. (3.5)

Now let f € C.(X) N D(E) be positive such that &[f] <1 and A > 0. Then by Holder

inequality we have

[ e < 1Pyl
U2A)

-1 1
< C&[flf =z A3o (m)
-1 1 -

where the latter inequality follows from (2.5). By the 'weak capacitary inequality’
Cap{f > A} < A7*&[f],

and inequality (3.5) we obtain u{f > A} < C/A®. Since by the properties of ¥,
limy 00 ¥(t) = 00, we achieve

/ < C(\I/_I(AZ/C))_I — 0 as A — oo, (3.7)
{f2A}

uniformly in f, implying that B is L?*(x)-nearly uniformly integrable.
ii)=1): follows from Lemma 3.1.

3.2 Some consequences of Sobolev-Orlicz inequalities

For ®(t) = 1/pt?, p > 1, inequality (3.1) yields the Sobolev’s inequality. Further, Sobolev’s
inequality leads to Nash inequality which in turns leads to the ultracontractivity of the
related semi group (see [Var85]). Our next task is to prove that such implication still
holds true in our general setting: Namely a (SOI) with an N-function leads to a Nash-
type inequality.

First we shall fix some notations. For an N-function ® we set

A(s) = s> 0 and x, = sup{(A(u(K))Cap(K))™', K compact}, (3.8)

ot
s®-1(1/s)’



where the ratio is understood to be zero if Cap(K) = 0.
We observe that A satisfies the following property:

0 < S1 S SS9 = A(Sz) S 2A(81) (39)
Indeed, from inequality (2.5) we infer
A(Sz) < \11_1(1/82) S \11_1(1/81) S 2A(81)

Theorem 3.3. Assume that (SOI) holds true with an N-function ®. Then for every
f € D)\ {0} and every e € (0,1) we have

o ARG
1112 u) (1= (| P aACa) (3.10)

For ®(t) = d_ztd/d_2 d > 2 then A(s) = ¢s72/Y. Whence if moreover g = m, then
(SOI) is the classmal SI) and (3.10) is the usual Nash inequality:

‘/ﬁ YD < o FI U ], Y € D(E).

For the gradient energy form on 'nice’ manifolds, Grigor’yan proved in [Gri99, Lemma
6.3] a similar inequality.

Proof. We follow an idea of Grigor’yan with some modifications.

By Markov property we learn that it suffices to make the proof for positive elements from
D(&)\ {0}. Let f be such an element and € € (0,1). We first suppose that u(X) < oo.
Clearly

FP<(f—s)t+2sf, Vs > 0. (3.11)
Setting Q, : {f > s}, A:= fX fdu, B := fX f*dp and using Holder inequality, we get
B < / (f—s)zd/,c—l—QsAg/ FPdu 4 2sA
Q. Q,
< e llze gl £ Mo + 254 = 1521 o ) + 254

A(M( s)

1
< ———k, & f] + 2sA. 3.12
M) 1
On the other hand we have £(€),) < s™'A. So that using (3.9) and choosing s = £ we
get the desired result for finite y. Now for arbitrary p, set By the open ball of X centered
at xo with radius & and gy : 1, . Then

L ) 201 £117 ()
& 2Ky, 1—c¢ dup ) A (———2~
1) 2 (2a) M/f M>€&F@Q
||f||%1(uk)
> ()0 - (e
201 F1121
K 2d as k — oo .
— (2#,) /f efoZdM) — 00, (3.13)
which was to be proved. O



The latter result is the main input to show that (SOI) implies the ultracontractivity
property of the related semigroup T} := e~*¥, for ¢ > 0.
Let ® be an N-function and A defined as before. Set k := k,,. Following Grigor’yan, we
set v the function defined via

and for every e € (0,1)

2
ev(2(1 — €)t)’

Observe that owing to the behavior of @ at infinity the integral equation defining v is well
posed.

66(t) =

Theorem 3.4. Assume (SOI) with an N-function ® and pn = m. Then for every t > 0,
Ty 1s ultracontractive and

T4z pe < Be(t/2)e!, Ve € (0,1). (3.14)

It follows that for every t > 0, T; is an integral operator, with kernel p(x,y) defined
everywhere and such that

sup pi(z,y) < Be(t/2)e", Vt > 0. (3.15)
zyeX

We note that, in an other context, Coulhon [Cou96, Proposition II.1] established a
similar result with a bound which is different from ours.

Proof. We are going to prove the boundedness of H, := e~ +! from L' into L? with the
bound 651/2, which is by the symmetry of T; and duality equivalent to the claim of the
theorem.

For this purpose, thank to the Markov property for H;:

|Hof| < H|fl. a.e.V f € L%,

it suffices to prove that for every t > 0 and every f € L2 N L', f > 0 and || f|[z: = 1, we
have

| Hfll7> < Belt).
Let f be such a function. Set

fulw) == Hif(e), T(t) = /X fulw)? dm(z) = | Hof 2. (3.16)



Observing that for every t > 0, f; € D(H)\ {0}, differentiating with respect to ¢, applying
Nash inequality (3.10) and using inequality (3.9) , we achieve

J(t) = =2((H+1)Hf, Hf) = —2&[f]
o ||ft||L1
1— 6 / ft fX t2 dm>
< —2(1 — 6)/4;_1(/)( ft2 dm)A ﬁ)
= —2(1— e)/i_lJ(t)A(%(t)), Yt > 0. (3.17)

The latter inequality leads to

—2(1 —e)x . (3.18)

Integrating between 0 and ¢ and making the change of variable s = 2e7'.J(¢)~! we obtain

2¢ L)t d 2¢LJ ()7t d
m/ i zm/ C > 9(1— et (3.19)
0 SA(S) 2e—1 J(O)—l SA(S)

which by the definition of 3, yields

J(t) < Pe(t), (3.20)

which gives the first part of the theorem.

The rest of the proof follows from Dunford-Pettis theorem (see [Tre67, Theorem 46.1
p.471]).
O

Let us observe that for g = m, inequality (3.1), with & replaced by &, leads to the
following Faber-Krahn-type inequality

(m(B)®~'(1/m(B)))”" < Ai(B), ¥V B open bounded. (3.21)

Here A\((B) := inf{E[f] : [, f*dm =1, f € D(), f =0 qe.on X\ B} is a sort of a
"Dirichlet eigenvalue’.

It is well known that in some special cases inequality (3.1) and (3.21) are equivalent to
each other. For example if ®(¢) = 1/pt?, p > 1 (see [GY03]) or if X is a nice Riemannian
manifold and £ is the gradient energy form (see [Car97]).

However it is still an open question whether the both inequalities are equivalent in general
or not!
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4 Sobolev-Orlicz inequalities, compactness of /, and
relationship to time changed Dirichlet forms

In this section we shall discuss to which extend is a (SOI) equivalent to the compactness
of I,,, provided g is finite. Further, to illustrate the importance of such results we shall
relate them to the compactness of a new Dirichlet form, namely a time changed Dirichlet
form or the trace of the Dirichlet form & on the support of . For p = m, a direct use of
Theorem 3.4 yields the following

Proposition 4.1. Assume that m is finite. Then a (SOI) implies the compactness of I,.

We mention that the latter result was obtained by Cipriani [Cip00, Theorem 4.2] un-
der the additional assumption that H is a Persson’s operator. However, we now know
that this assumption is not useful!

4.1 Relationship to time changed Dirichlet forms

To illustrate the relevance of the compactness property of I, (and hence the existence of
a (SOI)), we shall relate it to the compactness of the resolvent of a new Dirichlet form.

We start with the definition of the trace of the Dirichlet form & on some subsets. To
this end we denote by F. the extended Dirichlet space of £ (see [FOT94, p.35]).
Let 11 be a positive Radon measure charging no set of zero capacity and A the positive
continuous functional whose Revuz measure is u. We denote by F' the support of p and
by F the support of A. It is known [FOT94, p.265] that F is a quasi-support for u,
((F\ F) = 0 and that by [FOT94, theorem 4.6.2] if two elements from F, coincide pi-a.e.

then they coincide q.e. as well.
We introduce the subspaces

Fy gi={feF: f=0qe on F}, (4.1)

and HE the &-orthogonal complement of Fy p in the space F. so that the following
decomposition holds true [FOT94, p.265]:

Fo=Fy_ o H" (4.2)

Let P be the orthogonal projection onto HF. We define the trace of € on L*(F,p) as
follows (see [FOT94, p.266 and Theorem 4.6.5)):

D(&) ={f € L*F,u): f=u—pae. on F, for some u € F.},
E[f] =&[Pu], f=u—pae. on F
= inf{&u] : v € D(F.), u= f — pa.e. on F}.

11



It is known that € is also a Dirichlet form in L?(F,u) [FOT94, p.266] and the Dirich-
let space (£, D(&)) is called the time changed Dirichlet space or the trace of the space
(€,D(E)) on F relative to .

We denote by H the operator associated to € via the representation theorem. To give
an explicit formula for the resolvent of H we give some auxiliary notations: Set A% the
PCAF associated to p and and for o, p > 0 the operators R, U%* defined respectively on
the spaces L*(F,p) and L*(u) by

m

Rf(zx):= EI(/0 e~ f(Xy) dAY and USH f(z) := EI(/0 e~ PAT £(X,) dAY

Here X, designate the process associated to £. Clearly for every «, p > 0 and every
fe L), Ugt f is the a-potential of the signed measure fu with respect to the Dirichlet
form & + pu. Further by [BA04b, Theorem 3.1], for every o, p > 0, Us* is bounded on
L*(p) and by [FOT94, p.274]

(H+ 1) =R. (4.3)
We further introduce the auxiliary operators
K" :=L*(u) — L*(p), frs KFf:=U""f u—a.e. Ya>0 (4.4)
Then by [FOT94, p.266], R = K} on L*(F, ).

Now set T the trace of £ on the support of ;o and T the positive selfadjoint operator
related to T via the representation theorem.
Assume further that I, is bounded. Then for every f € L?(u) the signed measure has
finite energy integral. Set K its l-potential w.r.t. to £ From the latter discussion
(change £ by &) we get that if I, is bounded, then the resolvent of T is given by

T-!' = Ky, = (1.I7) (4.5)

lL2(F)

Indeed: Let f € L? and g € D(T). Then there is § € D(E) such that g = § p-a.e. on F.
From the definition of K; we get

Ty, o) =& LD = [ fad

=me, (4.6)

which gives the latter identity, whose use yields the following

Lemma 4.1. Assume that I, is bounded. Then The operator I, is compact if and only
if the time changed Dirichlet form T has discrete spectrum.
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4.2 Sobolev-Orlicz inequalities and compactness of I,

Theorem 4.1. Assume that the measure 1 under consideration is finite. If (SOI) holds
true with an N-function ®, then I, is compact.

Proof. First, we claim that if a (SOI) inequality holds for £ with an N-function ® then
I, is bounded. Indeed, by [BA04b, Theorem 3.1] showing this claim amounts to show the
following capacitary inequality

u(K) < CCap(K), VK C X compact, (4.7)

where C' is a positive constant.
Now by Theorem 3.1, for every compact subset K’ C X we have

p(K) < C (71 (1/u(K))) ™ Cap(K)

Further since p is finite, there is p > 0 such that u(X \ B,) < 1. So that by the latter
inequality and that fact that =1 is increasing, we get

u(K) < C(U7'(1/u(B,)))” Cap(K), VK C B,
and
w(K) < C(74(1))) ' Cap(K), VK C X\ B,,

which yields (4.7) and therefore the boundedness of I,.
On the other hand, if a (SOI) inequality holds for £ with an N-function, then it also holds
true for 7 with the same function. Indeed from the very definition of T, we get

12|22y < CTIf), Y F € D(T). (4.8)

Now we get the result from Proposition 4.1 and Lemma 4.1.

O

We proceed now to prove that some converse to Theorem 4.1 holds. This was already
observed by Cipriani, for ¢ = m, and the following result extends [Cip00, Theorem 5.1].

Theorem 4.2. Assume that p is finite and that I, is compact. Then there s an N-
function ® and a constant C such that

1 £2] 2wy < CELlS], ¥ f € D(E). (4.9)

It follows that if x is finite then (SOI)& compactness of I, < the L?(u)-uniform
integrability of the unit ball of D(€). This indeed generalizes partly [GW02, Theorem
1.2].
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Proof. The proof is inspired from Cipriani [Cip00].
The key idea is to show that the family

F={f*:fe D), &lf1 <1},

1s uniformly integrable then use Lemma 3.1.

From the assumption, F' is relatively compact in L'(u). Hence it is o(L'(p), L=(p))-
sequentially compact. It follows, by Dunford-Pettis criterion (see [DS58, Corollary 11
p.294]), that

1i 2du =0, 4.10
i Bf 1 (4.10)

uniformlyin f € F'. Let A > 0and f € C.(X)ND(E) such that f > 0and & [f] < 1. Since
I,, is bounded, making use of [BA04b, Theorem 3.1] together with the 'weak capacitary
inequality’, we achieve

p{f > A} < CCap{f > A} < %, (4.11)

which implies limy o, g{|f| > A} = 0 uniformly in f € B, by the regularity of £. Hence
by (4.10), we get

lim frdu =0, (4.12)
A=roe JLif1>a)

uniformly in f € B. Now using Lemma 3.1 we conclude that there is an N-function @
such that

sup / ®(f*)du = C < oo.
Te{D(€), &/l /X

Hence by the very definition of || - ||(s) we get
1fll@) < C&If], Ve D).

We finally get the result by recalling that || - ||(s) is equivalent to || - || (.-

5 Lower bounds for eigenvalues of time changed
Dirichlet forms

Let 7 be as in the latter section and assume that a (SOI) inequality holds true for D(&).
Then it holds also true for D(7T) (the trace of &!). Hence if moreover y is finite, from
Lemma 4.5, we learn that 7 has discrete spectrum. Further the first eigenvalue satisfies
the following Faber-Krahn-type inequality

51 > C(u(F)(L/u(F))™ = CA(u(F)). (5.1)

14



We are going to prove that the same type of isoperimetric inequality for the higher
eigenvalues also holds true.
We denote by (5\1@)1@21 the eigenvalues of T, ordered in an increasing way and by H the
operator associated to T.

Theorem 5.1. Under the above assumptions we have

1—¢€

A > 5

A(y(zy—l(%i)))), V0 <e<l. (5.2)

Proof. By Theorem 3.4 (changing & by &), we conclude that for every ¢ > 0 the operator
H; := ¢ has a kernel p} which is bounded by 8.(¢/2). Whence H; is a Hilbert-Schmidt

operator and
S e = | Hyflas = /F /F (o) dia() du(y)
= [ ) duda) < P2

Thereby
ke™ < u(F)B(1/2), (5.3)
which implies
. 1 k
A —log(————=). :
L= ) o4

Whence changing ¢ by (1 — €)t we get

1—¢ kevy(t)

A > 1
k=T Og(QM(F)

) Vt>0. (5.5)

Choosing t such that 2u(F') = kevy(t/2), we conclude that there is 6 € (t/2,¢) such that

5 > LD p)). (5.6)

Now we get the result by observing that v increases and using property (3.9).

6 Two applications

6.1 Ultracontractivity and spectra for traces of s-stable pro-
cesses on semi (d,I')-sets

As an illustration, we shall use the above obtained results to derive some spectral prop-
erties of the generator of the s-stable process over d-sets. The novelty here (compared to
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Triebel [Tri01, Theorem 23.2 p.349]) is that we do no more assume that the d-measure
related to the d-set under consideration has compact support. We shall only assume that
it 1s finite.

Here are some basic notions that we shall use in the sequel (see [Tri01, p.334]): A closed
subset F' C RY is called a sems (d,T')-set, where 0 < d < n, if there is a positive measure
p supported by F. a real-valued function I' on (0,1], positive constants C > 0, C; > 0
and 0 < Cy < 1 and a real number b such that:

i)
/,L(BT(:L')) < CriT(r), Yo € F, r € (0,1]. (6.1)

ii) The function I' is such that

T(r) < Cy|log(Car)[t, ¥r € (0,1]. (6.2)

The measure p is called a semi (d,I')-measure.
If b =0 we say that u 1s a semi d-measure and if moreover

w(B(z)) >C'r?, VYo e F,r€(0,1], (6.3)

we say that u is a d-measure.
By [Tri01, Proposition22.8], for every pair (d,I') satisfying the above conditions there
is a semi (d, I')-set.

Example 6.1. 1) The restriction of Lebesgue measure on a closed subset of R™ is a semi
n-measure.
2) The d-dimensional Hausdorff measure of a semi d-set is a semi d-measure.

From now on, we fix s such that 0 < s < 1 and we designate by £ the following
Dirichlet form:

D(EY) = {f € PR [ |F)Plefds < oo}, €9(Fg) = [ fe)fialal de

It is known that £¢) is a Dirichlet form whose domain the space of Bessel potentials
L**(R?) and is related to the operator (—A)*:
D((—A)) = L**RY), EV(f,9) = (=A)°f,9), ¥V [ € L**(R), g € D(EW)) = L**(RY).

From now on we assume that y is a semi (d, I')-measure such that n —2s < d < n.
For semi d-measures the following result is due to D.R. Adams (see [JW84, p.214].

Lemma 6.1. Let u be a semi (d,I")-measure. Then

i) Forn>2sand2 <p< nz—‘és (p < 2‘15 if b=0), the following inequality holds true

n—2

( /X FP )™’ < CEPf], ¥ f € D(EW). (6.4)
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ii) Forn <2s and 2 <p < oo (p= oo if n < 2s) the following inequality holds true

([ 1P dn)” < celif), v 5 € DEW). (6.5

Proof. We give the proof only for b # 0. For the other case it runs in the same way.
For 2 < p < o0, by Theorem 3.1, we have to show that there is a constant C such that

(1(K)/P < C(Cap(K))2, for all K compact. (6.6)

Let G be the kernel of ((—A)* + 1)~'. Then for every compact subset having positive
capacity we have

p(K)
e < [ Gl duty) (0.7)

z€R™

We shall consider the different cases separately.

i) The case n < 2s.

For p = o0, it is known that the embedding I, where dx refers to Lebesgue measure, is
bounded. Since dz-essentially bounded functions are bounded q.e. and since p does not
charge sets having zero capacity, we conclude that I, is bounded as well.

Now assume that p < oo. In this situation it is known that the kernel GG is continuous
and bounded and that points have positive capacity. Hence there is A > 0 such that for
every nonempty compact subset K we have Cap(K) > A.

Let K be a compact subset with positive capacity. Thanks to the latter observations and
inequality (6.7), we get

)P ) e 41/p-1)2 1/p
i A i) S A f Gl (69

On the other hand, it is not difficult to realize (see [BA04a, p.14]) that there is a constant
C(n), depending only on n, such that

wwp [ Gle)duly) < O swp [ Glavy) duty) (6.9)
x€ER™ J B,(1)° x€R™ J B, (1)
Thus
(K /
— < (14+C(n))su G(z,y)d
Cap(l) = 1FCm)suw - (2, y) duly)

<sup G(z,y)CCI'(1) < oo,
T,y

yielding inequality (6.6).
The case n > 2s. The proof runs substantially as the latter case. Recalling that G(x,y) <
Alx — y|**7", we are lead an other time to show that

sup / |o — y|q(25_”) du(y) < oo,
x€ER™ J B,(1)
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for 1l <¢g< n—dZs'

Let ¢ be such a number. Observe that for 0 < ¢ < 1 we have

B(t) 1=t u(B,(1)) < CC#*"=2) (log(Cst)),

so that by assumption on ¢, lim; o B(t) = 0. Hence a routine computation yields

1
/ o =yl duly) = p(Ba(1) + q(n — 28)/ 11257 By (4)) di
B (1) 0
1
< CT(1) + CCI/ td=1=a(n=29) | o0 (Cyt) | dt.
0

As a final step we have to prove that the latter integral is finite. Clearly it 1s, if b < 0.
On the other hand iterating the integration by parts an other time, we realize that we
are lead to prove the claim for 0 < b < 1. For such b, |log Cot|* < |log Cyt|. So that it

suffices to make the proof for b = 1.

1 1
/ tim1a =2 log (Cyt )| dt = C'|og(Cy))| +C”/ a2 gt < oo, (6.10)
0 0

by assumption on q.
The case n = 2s. Let ¢ > 1 and ¢ its conjugate exponent. Making use of (6.6) together
with Holder inequality and replacing G by GY in the inequality (6.9), we obtain

)/ 1/2q
% s j;lﬂgn(/qu(x,y)du(y))/
< (14 C(n))* sup (/ () du(y)) .
x€R™ B.(1)

So that we are lead to show the finiteness of the latter integral. We recall that there is a
constant A such that

G(z,y) < Alog(2/[x —yl), for [z —y[ < 1. (6.11)

Now using Fubini theorem, integrating by parts and taking the the properties of the
measure (1 into account we achieve

/B (1)(10g(2/|$ —y))"dply) = log(2)"u(Bx(1)) + qC’/O 7! log t|*7" [ log(Cyt)|" dt.

The rest of the proof runs now in a similar way as in final step of the latter case, getting
the sought result, which finishes the proof. O

Theorem 6.1. Let i be a semi (d,I')-measure with support F' such that n —2s < d <n.

Set T the trace of 51(5) on L*(F,p) and p, the kernel of the related semigroup. Let p > 2
be as given in the latter lemma. Then

1
<O V>0, (6.12)
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where q is the conjugate of p/2.
If further u is finite, then T has discrete spectrum. Set (Ap)i its eigenvalues, ordered in
an increasing way. Then the following inequalities hold true:

> CET . VE> 1. (6.13)

Proof. By Lemma 6.1, we have a (SOI) with U(¢) = p™'t*, 2 < p < oco. Further by
Lemma 4.1, I, is compact so that by Lemma 4.1, T has discrete spectrum.

For p < oo, the rest of the proof is obtained by a straightforward application of Theorem
3.4 and Theorem 5.1.

For n < 2s and p = oo we get the proof by passing to the limit (p — oo) and by observing
that the resulting constant is finite (which follows from the first step in the proof of

Lemma 6.1).
]

6.2 Spectra of certain Dirichlet forms of jump-type on Besov
spaces over d-sets

We pursue to work in the same setting. We assume that n = 2s, and that p is a d-measure.
Set
P(t):=e' — 1.

Then, by a result due to Mazja [Maz81, Folgerung6.2, p.46], the space L**(R") is embed-
ded into the Orlicz space Lg(p): There is a constant C' such that

1o < CELf], Vf € L™ (R™). (6.14)

Let F be the d-set related to p and A its diagonal. Define ¢ by § := s + % = ”zid.
Let B be the form defined by

= [ P )t D)= (1 € 2P0 <817 < )

Then B is a regular Dirichlet form on L*(F, 1) (see [FU03b]) and its domain is the Besov
space By *(F). Combining inequality (6.14) with the Jonsson-Wallin trace theorem [JW84,
Theorem 1, p.141] which asserts that

By*(F) = L**(R"),
and that both the restriction and extension operators are continuous, we obtain
172 La < CBilf], Vf € Bi*(F), (6.15)

where C' is a positive constant.
We would like to mention that Fukushima-Uemura [FU03a] proved that for n > 2s and
d < % then a Sobolev-type inequality holds true for Bg’z(F). So that the latter result
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completes the small gap in the latter mentioned work.

Whence making use of Theorem 3.4, we conclude that the semigroup of the operator
related to B has a kernel p}’ and by Proposition 4.1 it has a discrete spectrum provided p
is finite.

The A corresponding to ® is given by

1

As) = ———F—— 1
(5) slog(1/s+1)’ (6.16)
so that the corresponding ~ is given by the identity
L+ ~(t
t = r,7(t)log ( ’Y(Z)( )) + rulog(l 4+ ~(¢)), t > 0. (6.17)

The lower bounds for the eigenvalues are described in the following
Theorem 6.2. Let u be a finite d-measure. Then B has discrete spectrum. Set Ay <
Ao... < A < ... the eigenvalues of By. Then

> C(l —€) kk
2u(F) log(zM(F) +1)

, Vl<e<1,

where C s positive constant.
Proof. Making use of Theorem 5.1 we get

1—e¢ 2u(F)

A(’Y(Q’Y_I(T)))- (6.18)

Hence, owing to an idea of Grigor’yan, we get the result if we show that the function Aoy
has at most polynomial decay i.e.,

A(y(21))
A(v(#))

We proceed now to prove the latter claim. For every ¢ > 0, set Q(t) := % By the

properties of A and v, we have Q(t) > 0 for every ¢t > 0. On the other hand we have
_(t)log(1 +1/7(2))
Q(t) = :
7(2t)log(1 +1/~(2t))
Since y~!(t) — oo as t — 0o, 7 also does. So that lim;_,., Q(t) = 1. Further we have

(1) log(1 + 1)
t t ’

Ak >

>6>0,Vt>0. (6.19)

= Ky log(l +1/t) + K,

which implies lim; 0 y(¢)/t = 0. Thereby

li #) = li — =1/2
tl—l%lQ( ) tl—l%l 2t — K, log(l + ’y(Qt)) / ’

which yields (6.19) and the proof is finished.
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