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Abstract. We consider convex functions on infinite dimensional spaces equipped with mea-
sures. Our main results give some estimates of the first and second derivatives of a convex
function, where second derivatives are considered from two different points of view: as point
functions and as measures.

Introduction

In recent years several works have been published on infinite dimensional extensions of the
classical result of A.D. Alexandroff on the second order differentiability of convex functions and
related problems (see [4], [9], [10]). It turns out that the Alexandroff theorem has no direct
extension to infinite dimensions, although a number of interesting positive results have been
proved. One of the negative results is that, given a nice measure µ on an infinite dimensional
separable Hilbert space X, one can find a convex function that has no second derivative at
almost every point with respect to µ. The situation is similar to that of the Fréchet differen-
tiability of a Lipschitzian function; moreover, a convex Lipschitzian function that fails to be
Fréchet differentiable µ-a.e. provides a counter-example for the second order differentiability. It
is known, however, that the situation with the Fréchet differentiablity of Lipschitzian functions
changes if one considers the differentiability along a compactly embedded subspace E ⊂ X.
Then, for any reasonable measure µ, one obtains the Fréchet differentiablity along E almost
everywhere with respect to µ (see, e.g., [3]). In this paper, we make an attempt to investigate
along the same lines the second order differentiability of convex functions. A study of convexity
along a smaller subspace has been undertaken in [6], [11], where H-convex functions have been
introduced in the case of a Gaussian measure with the Cameron–Martin space H. Here we are
concerned with more general measures and mostly deal with convexity on the lines parallel to
a given vector along which the measure is differentiable. Our main results give some estimates
of the first and second derivatives of a convex function, where second derivatives are considered
from two different points of view: as point functions and as measures.

1. Terminology and auxiliary results

Throughout the term a Radon measure µ means a bounded (possibly signed) Borel measure
which is compact inner regular and ‖µ‖ stands for the total variation of µ. A function f on a
locally convex space X is called smooth cylindrical if

f(x) = ϕ(l1(x), . . . , ln(x)), ϕ ∈ C∞b (Rn), li ∈ X∗.

The space of all functions of such a form is denoted by FC∞b . We recall that a Radon measure µ
on a locally convex spaceX is called differentiable along a vector h ∈ X in the sense of Skorohod
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(or Skorohod differentiable) if there exists a measure dhµ (called the Skorohod derivative of µ
along h) such that for every smooth cylindrical function f one has∫

∂hf(x)µ(dx) = −
∫
f(x) dhµ(dx).

If dhµ� µ, then µ is called Fomin differentiable. In that case, the Radon–Nikodym derivative
βµ

h of dhµ with respect to µ is called the logarithmic derivative of µ along h. The terminology
is explained by the fact that in the case when X = R and h = 1, the measure µ is Fomin
differentiable precisely when µ has an absolutely continuous density % with %′ ∈ L1(R); then
βµ

1 = %′/%. The existence of a Skorohod derivative in the one dimensional case is equivalent to
the existence of a density % of bounded variation. Then d1µ is the derivative of µ in the sense
of generalized functions. The situation is similar in Rn, e.g., µ is Fomin differentiable along n
linearly independent directions if and only if µ has a density % which belongs to the Sobolev
class W 1,1(Rn); then dhµ = ∂h% dx and βµ

h = ∂h%/%.
The shift of a measure µ on X along a vector h, i.e., the measure B 7→ µ(B − h), is denoted

by µh. If µth is equivalent to µ for all real t, then µ is called quasi-invariant along h. The quasi-
invariance along h implies the continuity of µ along h, i.e., the equality lim

t→0
‖µ − µth‖ = 0. A

measure on Rn is continuous along n linearly independent vectors precisely when it is absolutely
continuous. The quasi-invariance along n linearly independent vectors is equivalent to the
existence of a density that does not vanish almost everywhere.

Higher order derivatives are definited inductively; e.g., d2
hµ := dh(dhµ). If h, k ∈ X are such

that both dhdkµ and dkdhµ exist, then one can show that dhdkµ = dkdhµ, and we say that
d2

hkµ := dhdkµ = dkdhµ exists. It is worth noting that if µ is differentiable (in Skorohod’s
or Fomin’s sense) along h and k, then it is differentiable in the same sense along any linear
combination of h and k and dsh+tkµ = sdhµ+ tdkµ. If µ is twice Fomin differentiable along h,
then the density of d2

hµ with respect to µ is denoted by βµ
h,h. We observe that if βµ

h is in L2(µ)

and has a µ-integrable partial derivative ∂hβ
µ
h , then µ is twice Fomin differentiable along h and

d2
hµ = [∂hβ

µ
h + (βµ

h )2]µ.
Another useful fact that we employ below is that if µ is differentiable along h and k, then

one can find differentiable (in the same sense) conditional measures on the planes parallel to
the linear span L of h and k. More precisely, let Y be any closed linear subspace in X such
that X is a topological sum of L and Y . Let ν be the image of µ under the natural projection
to Y . Then one can find measures µy, y ∈ Y , on the subspaces y + L that are differentiable
along h and k in the same sense as µ and

µ(B) =

∫
Y

µy(B) ν(dy), B ∈ B(X).

The same is true in the case of quasi-invariance or continuity along h and k (see, e.g. [1]).
A Radon probability measure µ on X is called centered Gaussian if, for every continuous

linear functional f on X, the induced measure µ ◦ f−1 on the line is centered Gaussian. Given
h ∈ X, let us set

|h|H := sup

{
f(h) : f ∈ X∗,

∫
f(x)2 µ(dx) ≤ 1

}
.

The space
H = H(µ) :=

{
h ∈ X : |h|H <∞

}
is called the Cameron–Martin space of µ. It is known that H with the norm | · |H is a separable
Hilbert space and its natural embedding into X is compact. If X is a Hilbert space, then
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H = R(X), where R is the Hilbert–Schmidt operator given by (Rh,Rk) =
∫

(h, x)(k, x)µ(dx).

To every h ∈ H, there corresponds a unique element ĥ from the closure of X∗ in L2(µ) specified
by the equality ∫

X

ĥ(x)f(x)µ(dx) = f(h), f ∈ X∗.

The element ĥ has a linear version and is called the measurable linear functional generated
by h. It is known that a centered Gaussian measure µ is infinitely differentiable along all

vectors h ∈ H = H(µ) and βµ
h = −ĥ. In addition, µ is quasi-invariant along h and the density

of µh with respect to µ is given by %h(x) = exp
[
ĥ(x) − |h|2H/2

]
. The Ornstein–Uhlenbeck

semigroup (Tt)t≥0 on L1(µ) is defined by the formula

Ttψ(x) =

∫
ψ

(
e−tx+

√
1− e−2ty

)
µ(dy).

For more details on Gaussian measures, see, e.g., [2].

Now let F be a real valued µ-measurable function on X such that the restriction of F to
y + L is convex for ν-a.e. y, where L is the linear span of the vectors h and k along which
µ is continuous. According to the Alexandroff theorem, this restriction is twice differentiable
at almost every point x ∈ L, where L is equiped with Lebesgue measure induced by the
isomorphism of L and R2. To be more precise, the limit

∂h∂kF (x) :=
1

2
lim
t→0

t−2
[
F (x+ th+ tk) + F (x− th− tk)

− F (x+ th)− F (x− th)− F (x+ tk)− F (x− tk) + 2F (x)
]

exists a.e. on L. Hence, ∂h∂kF exists µ-a.e. For the same reason,

∂2
hF (x) := lim

t→0
t−2[F (x+ th) + F (x− th)− F (x+ th)− 2F (x)]

exists µ-a.e. In addition, ∂2
hF (x) ≥ 0.

We shall call F convex along a linear subspace E (or E-convex) if h 7→ F (x+h) is convex on
E for every x ∈ X. If E is endowed with a norm | · |E, then we say that an E-convex function
F is second order differentiable along E at a point x if there exist lx ∈ ∂F (x), where ∂F (x) is
the sub-differential of F at x, and a bounded linear operator Tx : E → E∗ such that for each
h ∈ E one has

F (x+ th)− F (x) = tlx(h) +
t2

2
Tx(h)(h) + o(t2), (t→ 0).

If F is Gâteaux differentiable along E at the point x, then ∂F (x) consists of a single element
DEF (x) ∈ E∗.

It should be noted that ∂2
hF may be different from the second derivative of F in the sense

of generalized functions. For example, if f is the usual Cantor function on [0, 1] and F (x) =∫ x

0
f(t) dt, then F ′′ = 0 a.e., but F ′′ is not zero in the sense of distributions. It is known that if

F is a finite convex function on Rn, then there exist locally bounded Borel measures Fij on Rn

such that the generalized derivative ∂xi
∂xj

F is the measure Fij, and the matrix (Fij(B))i,j≤n is

nonnegative for every Borel set B. One can write the decomposition Fij = F ac
ij dx+ F sing

ij into
the absolutely continuous and singular parts and then almost everywhere
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F ac
ij = lim

t→0
t−2

[
F (x+ tei + tej) + F (x− tei − tej)

− F (x− tei)− F (x− tej) + 2F (x)
]
,

where e1, . . . , en is the standard basis in Rn. One of our goals is to obtain a similar decomposi-
tion in the infinite dimensional case. The main point is, of course, to find a suitable analogue
of second generalized derivatives. Our approach is as follows. Suppose that in the finite dimen-
sional case we replace Lebesgue measure by some probability measure µ with a nice density %.
Then the generalized second derivative of F can be expressed via %. Namely, we can consider
the measure Fµ (i.e., the measure with density F with respect to µ), look at its generalized
second order derivatives ∂2

xi
(Fµ), which are locally finite measures. If F is twice differentiable

in the usual sense, then we can recover ∂2
xi
F from the expression

(∂2
xi
F )µ = ∂2

xi
(Fµ)− 2∂xi

F∂xi
µ− F∂2

xi
µ,

where the right hand side exists as a locally bounded measure for any convex F . In general,
however, the right hand side is not absolutely continuous and ∂2

xi
F has to be recovered from

its absolutely continuous part. We shall follow this approach also in infinite dimensions.
Although the pointwise second order derivative does not completely characterize the function,

it is of interest to have the integrability of the function ∂2
hF . The next result gives a sufficient

condition for the integrability along with a bit stronger version of the above mentioned finite
dimensional differentiability.

Lemma 1.1. (i) Let hn be a sequence of vectors along which µ is differentiable and let L be
the linear span of {hn}. Suppose a measurable function F is convex along L. Then µ-a.e. F
has the second derivative along every finite dimensional subspace in L.

(ii) Let F ∈ Lp(µ) for some p > 1. Assume that µ is quasi-invariant along h and that for
the Radon–Nikodym derivative %th of µth with respect to µ we have∣∣t−2[%th(x) + %−th(x)− 2]

∣∣ ≤ G(x),

where G ∈ Lp′
(µ). Then the limit

∂2
hF (x) = lim

t→0

F (x+ th) + F (x− th)− 2F (x)

t2
,

which exists µ-a.e., defines a nonnegative µ-integrable function. In particular, this assertion is
true if µ is a centered Gaussian measure with the Cameron–Martin space H and h ∈ H.

Proof. (i) In the proof of the Alexandroff theorem in [5], it has been verified that the second
order derivative of a convex function on Rn exists at a point x provided that x is a Lebesgue
point for the first derivative of F and for the absolutely continuous part of the second order
derivative and, in addition, the singular component ν of the second order derivative satisfies
the condition lim

r→0
|ν|(B(x, r))r−n = 0, where B(x, r) is the closed ball of radius r centered at x.

By using the conditional measures, one obtains all the three conditions a.e. on every finite
dimensional subspace which is a shift of the linear span of h1, . . . , hn.

(ii) The fact that ∂2
hF (x) ≥ 0 whenever it exists, follows by convexity. In order to show that

∂2
hF is integrable, it suffices, by Fatou’s theorem, to obtain an upper bound on the integrals of

gn(x) := n2[F (x+ n−1h) + F (x− n−1h)− 2F (x)].
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We have ∫
gn(x)µ(dx) =

∫
F (y)n2[%h(y − n−1h) + %h(y + n−1h)− 2]µ(dy)

≤
∫
|F (y)|G(y)µ(dy).

In the Gaussian case, we recall that %th(x) = exp(tĥ(x)− t2|h|2H/2), where ĥ is the measurable

linear functional generated by h. Now it suffices to note that exp |ĥ| ∈ Ls(µ) for all s <∞. �

2. Main results

We shall now see that if a function F is convex along h and is integrable together with ∂hF
with respect to a reasonable measure µ, then the measure Fµ is twice differentiable along h.
This fact enables one to consider a generalized second derivative of F along h. Moreover, we
shall see that ∂hF is actually better integrable than we assume a priori.

Theorem 2.1. Suppose that a Radon probability measure µ on X is twice Skorohod differen-
tiable along a vector h ∈ X and that F is convex on almost all lines x+R1h. Assume also that
F is integrable with respect to the measures µ and d2

hµ and that ∂hF is integrable with respect
to dhµ. Then the measure Fµ is twice Skorohod differentiable along h. In addition, one has

‖d2
h(Fµ)‖ ≤ 2‖F‖L1(d2

hµ) + 2‖∂hF‖L1(dhµ). (2.1)

If F ≥ 0 and one has F p, F |βµ
h |p ∈ L1(µ) for some p > 1, then∫

|∂hF |r dµ <∞ (2.2)

for some r > 1. Finally, if F ∈ Lα(µ) for all α ∈ [1,∞) and βµ
h ∈ L2(µ), then ∂hF ∈ Lr(µ)

for every r < 2.

Proof. Let us consider first the one dimensional case. In addition, we shall assume that the
support of µ belongs to some bounded interval [a, b]. Clearly, F is Lipschitzian on [a, b]. The
measure µ has an absolutely continuous density % such that %′ has bounded variation. Hence
the measure Fµ is differentiable and d1(Fµ) = F ′µ + Fd1µ. Assume, in addition, that F and
% are smooth. Then, certainly, the measure d1(Fµ) is Skorohod differentiable, but we need an
estimate of the variation of its derivative. By convexity, F ′′ ≥ 0. Therefore,

0 ≤
∫
F ′′(x)%(x) dx =

∫
F (x)%′′(x) dx ≤

∫
|F (x)| |d2

1µ|(dx). (2.3)

As we have

d2
1(Fµ) = F ′′µ+ 2F ′d1µ+ Fd2

1µ,

we obtain from (2.3) the estimate

‖d2
1(Fµ)‖ ≤ ‖F ′′µ‖+ 2‖F ′d1µ‖+ ‖Fd2

1µ‖ ≤ 2‖F d2
1µ‖+ 2‖F ′d1µ‖.

Therefore, estimate (2.1) is established in the present special case. Now, still assuming that F
is smooth and µ has bounded support, but % is only absolutely continuous with %′ of bounded
variation, we can find a sequence of smooth probability densities %j with support in a fixed
interval such that

lim
j→∞

∫ [
|%j(x)− %(x)|+ |%′j(x)− %′(x)|

]
dx = 0
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and supj ‖d2
1µj‖ <∞. By (2.1) we have

lim sup
j→∞

‖d2
1(Fµj)‖ ≤ 2‖Fd2

1µ‖+ 2‖F ′d1µ‖.

This yields (see [1]) that d2
1(Fµ) exists and

‖d2
1(Fµ)‖ ≤ lim sup

j→∞
‖d2

1(Fµj)‖.

Indeed, it suffices to note that for every ψ ∈ C∞0 (R) with |ψ| ≤ 1, one has∫
ψ d2

1[Fµ](dx) = lim
j→∞

∫
ψ′′ Fµj(dx)

= lim
j→∞

ψ d2
1[Fµj](dx) ≤ ‖d2

1(Fµj)‖.

The next step is to relax the smothness assumption on F still assuming that µ has bounded
support in some [a, b]. To this end, it suffices to note that there exists a sequence of smooth
convex functions Fj which converge uniformly to F on [a, b] such that the functions F ′j converge

to F ′ in L1[a, b]. In the same manner as above, one verifies that (2.1) still holds. Now let us drop
the assumption that µ has bounded support. Let ζj be smooth compactly supported functions

such that 0 ≤ ζj ≤ 1, ζj(x) = 1 if |x| ≤ j, ζj(x) = 0 if |x| ≥ j+1, sup
j

sup
x

[
|ζ ′j(x)|+|ζ ′′j (x)|

]
<∞.

Let µj := ζjµ. Then the measures Fµj converge to Fµ in the variation norm. In addition,

d1µj = ζ ′jµ+ ζjd1µ, d2
1µj = ζ ′′j µ+ 2ζ ′jd1µ+ ζjd

2
1µ.

It is readily seen from this expression that F ′d1µj → Fd1µ and Fd2
1µj → Fd2

1µ in the variation
norm. Thus, we arrive at (2.1) in the general case.

We can write X as a topological sum X = R1h + Y for some closed hyperplane Y in X.
Let ν denote the image of µ under the natural projection to Y . It is known that there exist
conditional measures µy the lines y + R1h, y ∈ Y , which are twice Skorohod differentiable
along h (see [1, Ch. 2]). For ν-almost every y ∈ Y , the restriction of the function F to y+ R1h
is integrable with respect to d2

hµ
y and the restriction of ∂hF is integrable with respect to dhµ

y.
Therefore, by using the one dimensional case, we arrive at the estimate

‖d2
h(Fµ)‖ ≤ 2‖F d2

hµ‖+ 2‖∂hFdhµ‖,
which is (2.1).

Now suppose |F |p, |βµ
h |p|F | ∈ L1(µ) for some p > 1. According to Krugova’s inequality [7],

we have the estimate(∫
|βFµ

h (x)|2−ε F (x)µ(dx)

)1/(2−ε)

≤ (1 + ε−1)‖dh(Fµ)‖+
1− ε

ε
‖d2

h(Fµ)‖ (2.4)

for every ε ∈ (0, 1). We observe that βFµ
h = βµ

h + ∂hF/F a.e. with respect to the measure Fµ.
Since by our hypothesis βµ

h ∈ Lp(Fµ) with some p ∈ (1, 2), then also ∂hF/F ∈ Lp(Fµ). Now
let r ∈ (1, p). Set

s =
p

r
, α =

p− 1

s
= r

p− 1

p
.

Let t = s(s− 1)−1. Then αt = r(p− 1)(p− r)−1. Since p(p− r)(p− 1)−1 → p as r → 1, there
is r > 1 such that r ≤ p(p− r)(p− 1)−1. With this r, one has αt ≤ p, hence |F |αt ∈ L1(µ) and
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we obtain by Hölder’s inequality∫
|∂hF |r µ(dx) =

∫
|∂hF |r

Fα
Fα µ(dx)

≤
(∫

|∂hF |rs

Fαs
µ(dx)

)1/s(∫
Fαt µ(dx)

)1/t

<∞.

The proof is complete. �

Corollary 2.2. Let µ be a centered Gaussian measure and let h ∈ H(µ). Suppose that F is

convex along h and the functions F (1 + |ĥ|2) and ∂hFĥ are in L1(µ). Then the measure Fµ is
twice Skorohod differentiable along h and (2.1) is true. If, in addition, F ∈ Lp(µ) with some
p > 1, then (2.2) is true.

Proof. It suffices to recall that βµ
h = −ĥ and βµ

h,h = |ĥ|2 − |h|2H . �

As it has already been mentioned, it may happen that the pointwise second order derivative
is almost everywhere zero, but the corresponding part of dh(Fµ) is nontrivial. Let us explain
how ∂2

hF can be interpreted in the generalized sense in analogy with the case of Lebesgue
measure. Let us set

Fhh := d2
h(Fµ)− 2∂hFdhµ− Fd2

hµ,

provided that each of the three measures on the right exists separately. Heuristically, Fhh =
∂2

hFµ, since if F is twice differentiable along h in the usual sense and ∂2
hF ∈ L1(µ), then

d2
h(Fµ) = ∂2

hFµ+ Fd2
hµ+ 2∂hFdhµ. (2.5)

We know that ∂2
hF exists µ-a.e. and is µ-integrable. However, (2.5) may fail (as it happens in

the above mentioned one dimensional example). In general, Fhh can be regarded as a derivative
of ∂hF along h in the sense of distributions over (X,µ).

Proposition 2.3. Suppose that the hypotheses of Theorem 2.1 are fulfilled and that ∂hF ∈
L1(µ). Then the measure Fhh is finite and nonnegative. In addition,

Fhh = dh(∂hFµ)− ∂hFdhµ. (2.6)

Proof. Let ζ be a nonnegative smooth cylindrical function. We have∫
ζ(x)Fhh(dx) =

∫
ζ(x)d2

h(Fµ)(dx)− 2

∫
ζ(x)∂hF (x) dhµ(dx)−

∫
ζ(x)F (x) d2

hµ(dx)

= −
∫
∂hζ(x)dh(Fµ)(dx)− 2

∫
ζ(x)∂hF (x) dhµ(dx) +

∫
[∂hζ(x)F (x) + ζ(x)∂hF (x)] dhµ(dx)

= −
∫
∂hζ(x)∂hF (x)µ(dx)−

∫
ζ(x)∂hF (x) dhµ(dx)

= −
∫
∂hF (x) dh(ζµ)(dx).

The right-hand side is nonnegative. This is verified by using the one dimensional conditional
measures and noting that if % is an absolutely continuous probability density on the real line
and G is a convex function such that G′%′ and G′% are integrable, then∫

G′(t)%′(t) dt ≤ 0.
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Indeed, for any fixed a and b one has∫ b

a

G′(t)%′(t) dt ≤ G′(b)%(b)−G′(a)%(a),

which follows by the integration by parts formula, since % ≥ 0 and the measure G′′ is non-
negative. The integrability of G′% enables us to pick a → −∞ and b → +∞ in such a way
that G′(b)%(b) and G′(a)%(a) tend to zero. Equality (2.6) is seen from the above chain of
equalities. �

Proposition 2.4. Let Ψ be a µ-integrable µ-a.e. finite nonnegative function such that the sets
{Ψ ≤ c} have compact closure, let h ∈ X, and let Fn, n ∈ N, be µ-measurable functions such
that the sequence {Fn} is bounded in Lp(µ) for some p > 1. Assume that the functions Fn are
convex and twice differentiable along h on almost all lines parallel to h and

∂hFnβ
µ
h , Fnβ

µ
h , Fnβ

µ
h,h ∈ L

1(µ).

Suppose also that the measure d2
h(Ψµ) has a density g ∈ Lp′

(µ) with respect to µ. Then the
sequence of measures (∂2

hFn)µ is uniformly tight.

Proof. According to Theorem 2.1 the measures Fnµ are twice Skorohod differentiable along h.
Since the measures ∂hFdhµ and Fd2

hµ have bounded variations, the functions ∂2
hFn are µ-

integrable. Therefore,∫
∂2

hFn(x) Ψ(x)µ(dx) =

∫
Fn(x) d2

h(Ψµ)(dx)

=

∫
Fn(x)g(x)µ(dx) ≤ ‖Ψ‖Lp(µ)‖g‖Lp′ (µ).

As ∂2
hFn(x) ≥ 0 a.e., the integrals on the left are uniformly bounded, hence the sequence of

measures (∂2
hFn)µ is uniformly tight. �

Corollary 2.5. Let µ be a centered Radon Gaussian measure on a sequentially complete locally
convex space X and let H be the Cameron–Martin space of µ. Let F ∈ Lp(µ), where p > 1, be
an H-convex function. Then, for any h ∈ H, the measures (∂2

hTεf)µ, ε ∈ (0, 1), are uniformly
tight and converge weakly to Fhh as ε→ 0.

Proof. We shall construct a nonnegative function Ψ that is finite on a linear space of full measure
such that the sets {Ψ ≤ c} have compact closure and the functions Ψ, ∂hΨ, ∂

2
hΨ belong to all

Lp(µ). It follows by our hypotheses that there exists a balanced convex compact set K of
positive µ-measure. The Minkowski functional qK of K is defined by the formula qK(x) =
inf{t > 0: t−1x ∈ K} on the linear span EK of K and qK(x) = +∞ if x 6∈ EK . The function
qK is H-Lipschitzian and belongs to all Lp(µ). Clearly, the sets {qK ≤ c} = cK are compact.
However, this function may not be sufficiently differentiable. Let us consider the function
Ψ = T1qK . This function is infinitely differentiable along H and all its partial derivatives along
directions from H are in all Lp(µ). In addition, any set {Ψ ≤ c} has compact closure, because
it is contained in the set (6c+m)K, where m > 0 is such that µ(mK) ≥ 1/2. �

We recall that a countably additive measure m on a measurable space (X,B) with values in
a normed space E is said to have bounded semivariation if

‖m‖E := sup{‖l(m)‖ : l ∈ E∗, ‖l‖ ≤ 1} <∞,
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where ‖l(m)‖ is the usual total variation of the scalar measure l(m). It is easily seen that

sup
B∈B

|m(B)|E ≤ ‖m‖E ≤ 2 sup
B∈B

|m(B)|E.

The total variation of m is defined as

v(m) := sup
{ n∑

i=1

|m(Bi)|E
}
,

where the supremum is taken over all finite partitions of X into disjoint sets Bi ∈ B. If E is
infinite dimensional, thenmmay have finite semivariation, but infinite total variation. We recall
that if m is a countably additive measure of bounded total variation with values in a Hilbert
space E, then there exist a probability measure µ and a µ-integrable mapping f : X → E such
that m = fµ, i.e.

m(B) =

∫
B

f dµ, ∀B ∈ B.

Corollary 2.6. Let µ be a centered Gaussian measure on X with the Cameron–Martin space
H and let F ∈ L2(µ) be H-convex. Then the formula

(TBh, h)H := Fhh(B), B ∈ B(X),

defines a countably additive measure B 7→ TB with values in the space HS of all Hilbert–Schmidt
operators on H equipped with the Hilbert–Schmidt norm. In addition, this measure has bounded
semivariation such that

‖TB‖HS ≤ ‖F‖L2(µ).

Proof. Suppose first that F ∈ W 2,2(µ). Then the second derivative D2
HF (x) is a nonnegative

Hilbert–Schmidt operator on H. Let B ∈ B(X). Then the formula

(TBh, h)H =

∫
B

D2
HF (x)(h, h)µ(dx)

defines a nonnegative Hilbert–Schmidt operator whose Hilbert–Schmidt norm is majorized by∫
‖D2

HF (x)‖2
HS µ(dx). Let {ej} be an orthonormal basis such that TBej = tjej. We observe

that the functions

ξj := ∂ej
βµ

ej
+ |βµ

ej
|2 = −1 + |êj|2

are mutully orthogonal in L2(µ) and have equal norms in L2(µ). Since the functions ∂2
ej
F are

nonnegative, the Hilbert–Schmidt norm of TB can be estimated as follows:

∞∑
j=1

t2j =
∞∑

j=1

∣∣∣∣∫
B

∂2
ej
F (x)µ(dx)

∣∣∣∣2
≤

∞∑
j=1

∣∣∣∣∫
X

∂2
ej
F (x)µ(dx)

∣∣∣∣2 =
∞∑

j=1

∣∣∣∣∫
X

F (x)ξj(x)µ(dx)

∣∣∣∣2
≤

∫
X

|F (x)|2 µ(dx).

Therefore, the claim is true for the functions T1/kF . Letting k →∞ and noting that T1/kF → F
in L2(µ), we obtain the claim by the previous corollary. �
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It is worth noting that analogous results hold for a broader class of a-convex functions
considered in [6]. To be more specific, recall that given a centered Radon Gaussian measure µ,
a µ-measurable function f with values in the extended real line is said to be a-convex along a

vector h ∈ H = H(µ), where a ∈ R1, if f is finite a.e. and the function f + a
2
ĥ2 is convex on

the lines x+ R1h. It is clear from the proofs that some of the above results extend also to such
functions.
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