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0 Introduction

This paper is devoted to a study of the continuous solutions of the following
generalized Ginzburg-Landau equation :

(1) Lu − u(|u|2α − 1) = 0 in the distributional sense on
� d .

Where α > 0 and L is a strongly elliptic operator with bounded , uniformly
Hölder continuous coefficients and admitting an adjoint L∗ in the distributional
sense.
The equation ∆u− u(|u|2 − 1) = 0 was recently investigated on

� 2 and for com-
plex valued solutions by F.Bethuel/H.Brezis/ F.Helein/F.Merle and T.Rivière
[BeBrH1] [BeBrH2] [BrMT] for variational methods and R.M.Hervé/M.Hervé
[HH94] [HH96] by methods of analytic functions.
In this paper we intend to show that in fact semilinear perturbations of partial
differential equations leads in a very simple and natural way to results for the
equation (1) known for the equation ∆u − u(|u|2 − 1) = 0 on

� 2 by methods
of analytic functions and others . We shall obtain Hervés and Hervé-Harnack
inequalities.We shall discuss the solvability of the Dirichlet problem for real and
complex valued solutions and give more results about the scheaf of solutions of
the equation (1) .
Our paper is organized as follows : For the convenience of the reader who is not
familiar with linear and semilinear potential theory we shall devote section 1
and section 2 to a short presentation of the definitions, notations, nonlinear per-
turbations and related results necessary for the investigation of the generalized
Ginzburg-Landau equation. In section 3 we consider on

� d , d ≥ 2, a strongly
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elliptic operator with bounded and locally Hölder continuous coefficients in the
following form :

Lu(x) =
d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂u

∂xi
(x).

For every open set U ,let

HL(U) := {u ∈ C2(U) : Lu = 0}.

and

H(U) :=

{
u ∈ C(U) :

(
u +

∫
LGV

t u(t)
(
|u(t)|2α − 1

)
dt

)
∈ HL(V ) for V ⊂ V ⊂ U

}

where LGV is the Green function for L on V and C(U) is the set of real con-
tinuous functions on U .We set K1 = 4( 1

α
( 1

α
+ 1))M and K2 = 2

α
B where

M = sup{M(x), x ∈ � d} , B = sup{
∑d

i=1 |bi(x)|, x ∈ � d} and M(x) the big-
gest eigenvalue of the symmetric real Matrix (aij(x)). We prove for the solutions
of the generalized Ginzburg-Landau equation the following Hervés̀ inequality :
For every x ∈ � d , every R > 0 and u ∈ H(B(x, R)) we have |u(x)| ≤ σ(R) .
where σ(R) = [1 + K1

R2 + K2

R
]1/2α. Moreover we get a Hervé-Harnack inequality as

follows :
For every open set U and every compact set K of U we have |u(x)| ≤ σ(d(K, �U))
for every x ∈ K and u ∈ H(U). This inequality yields H(U) compact for the local
uniform convergence.We finish this section by a comparison in the case d = 2 and

α = 1 between σ(R) and σ0(R) = (1
2
+sup

(
12
R2 ,
√

1
4

+ 48
R4

)
)1/2 obtained by Hervé

[HH96] for complex valued solutions by different methods.Among others we get
the following : σ(R) ≤ σ0(R) if and only if R ≤ 2

√
2. In section 4 , we investigate

existence and unicity of the following Dirichlet problem :
Let f ∈ C(∂U, � ) be a continuous complex valued function at the boundary of U .
We look for a continuous complex valued solution u ∈ C(U, � ) of the following
system

(∗)
{

Lu + u(1 − |u|2α) = 0 on U in the distributional sense,
limx 7−→y u(x) = f(y) for every regular point y in ∂U

where |u|2 = (Re u)2 + (Im u)2.
We prove without any assumption on the regularity of the boundary and diffe-
rentiability of f that (∗) admits a solution on every open set U satisfying :
δ(U) := sup{

∫
GU

t (x)dt x ∈ U} ≤ 1 . The unicity is treated in the following way
: For every K > 1 , there exists a basis K such that for V ∈ VK and f ∈ C(∂U, � )
with ‖f‖∞ ≤ K there exists on U a unique solution of (∗).
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For L = ∆ on
� d , α = 1 , B a ball with radius R we have the following interesting

results :

δ(B) < 1 if and only if R <

(
4dπd/2

Γ(d/2)

)1/2

B ∈ VK if and only if R <

(
4dπd/2

Γ(d/2)(1 + 3K2)

)1/2

In section 5 we prove, for complex valued solutions of the Ginzburg-Landau
equation and as in the real case, a Hervé inequality with a bound σ having in
the case of

� 2 and for α = 1 the same behaviour (as R tends to infinty) as the
bound σ0 obtained by Hervé [HH96], we proove that σ0 ≤ σ. Moreover we obtain
for the general case |u| ≤ 1 for every u ∈ H(

� d , � ), for every non empty open set
U in

� d , H(U, � ) is compact for the local uniform convergence.

In the last section 6, we consider α ≥ 0 and for every open set U in
� d

H1(U, � ) = {u ∈ C(U, � ) : Lu = u(|u|2α − 1) in D.S on U with |u| ≤ 1}.

We prove a generalisation of the Hervé-Harnack inequality, obtained by Hervé
in the case of

� 2 and for α = 1 [HH96], in the following form :
For an open domain U in

� 2 , and K ⊂ U compact, there exists CK ≥ 1 such
that (1 − |u(x)|) ≤ CK(1 − |u(y)|) for every x, y ∈ K and every u ∈ H1(U, � ) .

For an open domain U in
� d , d ≥ 3, q > d

2
and K ⊂ U compact, there

exists CK such that (1−|u(x)|) ≤ CK(1−|u(y)|)1/q for every x, y ∈ K and every
u ∈ H1(U, � ).

The previous inequalities yields the following interesting convergence criterion:
Let U be a domain in

� d , d ≥ 2, (un)n ⊂ H1(U, � ) and β ∈ � with |β| = 1 then
the following properties are equivalent.

1) (un)n converges locally uniformly to β on U .

2) There exists x ∈ U such that un(x) converges to β.

Furthermore we have analogous results as bevore if we consider for m ≥ 0 the
equation Lu − u(|u|2α − m2α) = 0 in the distributional sense on

� d .
Solutions u of the semilinear equations considered in this work can be in-

terpreeeted as particle concentrations in physical and biological sciences. Such
interpretations can be found in our paper [BS], where we investigate nonlinear
semigroups with evolutionary law governed by weakly an autonomous system
of partial differential equations of parabolic type. Let us allready now that our
methods are applicable to a broader class of weakly coupled system of elliptic
parabolic operators of second order in the following form : for an open subset
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U in
� d , d ≥ 2, and an integer n ≥ 2 we denote by u ∈ C(U,

�n) the set of
continous functions from to

� n and consider the following generalisation of the
Ginzburg-Landau equation:We look for v = (u1, u2, ..., un) ∈ C(U,

� n) satisfying:
For every i ∈ {1, 2, ..., n}, Lui − ui(|v|2α − 1) = 0 in the distributional sence

on U, where |v|2 = u1
2 + u2

2 + ... + un
2.

1 Definitions and Notations

Let X be a locally compact space with countable base. For every open subset
U of X, let C(U)(B(U) resp.)be the set of all continuous real (Borel measurable
numerical resp.) functions on U.Given any set A of numerical functions Ab (A+

resp.) will denote the set of all bounded (positive resp.) function in A .
Let (X,G) be a linear harmonic Bauer space in the sense of [CC]. For every rela-
tively compact subset U of X , HU is the harmonic kernel defined by HU(x, .) = µU

x

for every x ∈ U and HU(x, .) = εx for every x ∈ X � U . µU
x is the harmonic mea-

sure associated with U and x by the Perron-Wiener-Brelot method.Further we
will denote by ∗G(U) the set of hyperharmonic functions,by S(U) the set of super-
harmonic functions and by P(U) the potentials on U (see [CC] or [BHH]).U(G)
denote the set of all relatively compact open subsets U of X for which the closure
U is contained in some P–set(i.e. an open set V on which there exists a strictly
positive potential p ∈ P(V )).
A family M = (MU )U∈U(G) is called a positive section of continuous potentials if
MU ∈ P(U) for all U ∈ U(G) and MU −MV is harmonic on U ∩ V for all U, V in
U(G) (see[BHH]).We will denote by M the set of all such sections.
The symbole ≺ denote the specific order on P(U) and • is the specific multipli-
cation.
In what follows we fix M ∈ M and we recall from [BBM] the following notions:
A Borel measurable function f from X to

�
is in the local Kato-class relatively

to M,denoted by KM
loc, if the specific product |f | • M is again a positive section

of positive and real potentials.
We recall that if G is the scheaf of the classical harmonic functions given by the
solutions of the Laplace equation on

� d(d ≥ 1) and M is given by the Lebesgue
measure,then K loc

M is the Kato-class Kn
loc introduced by Aisenman/simon [AS].

Let now ϕ be a Borel measurable function from X × �
to

�
. From [BBM] or

[BM] we recall the following :
a)ϕ is called locally Kato-bounded relatively to M , if for every c ∈ � ∗

+ ,there
exists pc ∈ M such that : |ϕ(., g)| • MU ≺ pc

U for every U ∈ U(G) and g ∈
Bb(X) with ‖g‖∞ ≤ c .
b)ϕ is called Kato-bounded relatively to M , if there exists p ∈ M such that :
|ϕ(., g)| • MU ≺ pU for every U ∈ U(G) and g ∈ Bb(X).
c)ϕ is called locally Kato-Lipschitzian relatively to M if for every c ∈ � ∗

+ , there
exists pc ∈ M such that : |ϕ(., u) − ϕ(., v)| • MU ≺ |u − v| • pc

U for every U ∈
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U(G) and u, v ∈ Bb(X) with ‖u‖∞ ≤ c and ‖v‖∞ ≤ c.
It is then easy to see that a function ϕ satisfying the previous conditions need
not to be (locally) bounded or (locally) lipschitzian.

2 Nonlinear perturbation of harmonic spaces

In this section we recall some notations and known facts about the nonlinear
perturbation of linear harmonic spaces (see among others [vG1], [BBM], [B1],
[B2], [Ba]).Let (X,G) be a linear Bauer space in the sense of [CC] . Fix M
a positive section M of continuous and real potential and consider for every
U ∈ U(G) the potential kernel KM

U = KMU
associated with M on U . Let ϕ be a

Borel measurable function from X × �
to

�
with the following conditions:

1) For every x ∈ X, t 7−→ tϕ(x, t) is increasing.

2) For every x ∈ X ϕ(x, ·) is continuous.

3) ϕ is locally Kato–bounded and ϕ− is Kato–bounded relatively to M . (Here
ϕ−(x, t) = sup(−ϕ(x, t), 0)).

For every open subset U of X, we set

H(U) = {u ∈ C(U) : (u+(uϕ(·, u))•MV ) ∈ G(V ) for everyV ∈ U(G) with V ⊂ U}.

By [BBM], (X,H)is a nonlinear harmonic Bauer space in the sense of [B1].
Let U be an open set of X. A function u from U to

�
lower semicontinuous and

locally lower bounded is termed hyperharmonic on U , if for every regular subset
V in X with V ⊂ U we have HV u ≤ u on V . A function u from U to

�
upper

semicontinuous and locally upper bounded is said to be hypoharmonic on U , if
for every regular subset V in (X,H) with V ⊂ U , we have HV u ≥ u on V . We will
denote by ∗H(U) (resp. ∗H(U)) the set of hyperharmonic (resp. hypoharmonic)
functions on U . An easy proof gives the following:

∗H(U) ∩ Bb(U) = {u ∈ Bb(U) : (u + (uϕ(·, u)) • MV ) ∈∗ G, V ⊂ U with V ∈ U(G)}
and

∗H(U) ∩ Bb(U) = {u ∈ Bb(U) : (u + (uϕ(·, u)) • MV ) ∈∗ G, V ⊂ U with V ∈ U(G)}.

We then obtain that ∗H and ∗H are nonlinear sheaves.
Let

V = {V ∈ X -regular such that ||MV || < 1}.
then V is a basis.

For every V ∈ U(G) we set −MV = (I − MV )−1MV ,
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−G(U) = {u ∈ C(U) : (u − u • MV ) ∈ G(V ), V ∈ U(G) with V ⊂ U},

and

H(U) = {u ∈ C(U) : (u + (|u|2α − 1) • MV ) ∈ G(V ), V ∈ U(G) with V ⊂ U},

we have by[BHH]and[B1]

Proposition 2.1.

H(U) = {u ∈ C(U) : (u + (|u|2α) •− MV ) ∈− G(V ), V ∈ U(G) with V ⊂ U}

and hence (X,H) is a harmonic Bauer space.

From the previous proposition and [BHH] [BBM] we have:

Proposition 2.2. ∗H and ∗H are scheaves and

∗H(U) ∩ Bb(U) = {u ∈ Bb(U) : (u + (u(|u|2α − 1)) • MV ) ∈∗ H(V ), V ∈ U(G) with V ⊂ U}
∗H(U) ∩ Bb(U) = {u ∈ Bb(U) : (u + (u(|u|2α − 1)) • MV ) ∈∗ G(V ), V ∈ U(G) with V ⊂ U}

The harmonic space (X,H) will play an important role for the investigation
of the generalized Ginzburg–Landau equation.

Let (X, H̃) be a general Bauer space (linear or nonlinear) and U an open set

in X. We shall say that U is an MP–set in (X, H̃), if the following comparison

principle is satisfied: Let u ∈∗ H̃(U), v ∈∗ H̃(U) such that lim infx 7−→z u(x) ≥
lim supx 7−→z v(x) for every z ∈ ∂U and if both sides of the inequality are not
simultaneously +∞ and −∞ , then u ≥ v on U.
In the sequel, we fix α > 0 , ϕ from X × �

to
�

defined by ϕ(x, t) = |t|2α − 1
and the harmonic space (X,H).
It is easy to see (e.g. by the investigation of the classical Ginzburg–Landau equa-
tion over 2) that (X,H) and (X,G) do not have the same MP–sets. We have the
following useful results.

Proposition 2.3. Let U be an MP–set in (X,G), v ∈ ∗H(U) and u ∈ ∗H(U) ∩
Bb(U). lim infx 7−→x u(x) ≥ lim supx 7−→z v(x) for every z ∈ ∂U and v(1 − |v|2α) ≤
u(1 − |u|2α) on U , then u ≥ v on U .

Proof. Let V ⊂ V ⊂ U , V regular in (X,H), hence V is regular in (X,G). Let
u1 = u + (u(|u|2α − 1)) • MV and v1 = v + (v(|v|2α − 1)) • MV , from the above
characterization of ∗H and ∗H 2.1 , we get u1 ∈ ∗G(U) and v1 ∈ ∗G(U). Since
u − v = u1 − v1 + (u(1 − |u|2α) − v(1 − |v|2α)) • MV we have u − v ∈ ∗G(U),
since U is an MP–set in (X,G) and lim infx 7−→z u(x) ≥ lim supx 7−→z v(x) for every
z ∈ ∂U , we thus obtain u ≥ v on U .
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The following corollary is important for the proof of the Hervé’s inequalities
for the (generalized) Ginzburg–Landau equation in real and complex case.

Corollary 2.4. Let U be an MP–set in (X,G), u ∈∗ H(U), v ∈∗ H(U)Cb(U)
and u, v continuous on U such that

lim inf
x 7−→z

u(x) ≥ lim sup
x 7−→z

v(x) for all z ∈ ∂U, u ≥ 1 on U

then u ≥ v on U .

Proof. Let Ω = {x ∈ U : u(x) < v(x)}, Ω is then open and since Ω ⊂ U , Ω is even
an MP–set in (X,G) (see [CC]). Moreover, we have lim infx 7−→z(u(x)− v(x)) ≥ 0
for every z ∈ ∂Ω, an easy calculation gives v(1 − |v|2α) ≤ u(1 − |u|2α) on Ω and
the statement follows from proposition 2.3.

Corollary 2.5. Assume 1 ∈∗ H , then for every H-regular set U in X and
f ∈ (∂U) we have |HV f | ≤ sup(‖f‖∞, 1), where ‖f‖∞ = sup{|f(x)|, x ∈ ∂U}.

3 Generalized Ginzburg–Landau equation on
� d,

d ≥ 1, the real case.

We consider on
� d , d ≥ 2, a partial differential operator L in the following form:

Lu(x) =
d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂u

∂xi
(x).

We assume that L satisfies the following conditions:

1) (Strong ellipticity). There exists constant γ > 0 such that
∑d

i,j=1 aij(x)ξiξj ≥
γ
∑d

i=1 ξ2
i for every x ∈ � d .

2) (Boundedness and uniform Hölder continuity). aij , bj are bounded on
� d , (aij)

is symmetric and there exist A > 0, s ∈]0, 1[ such that

d∑

i,j=1

|aij(x) − aij(y)|+
d∑

i=1

|bi(x) − bi(y)| ≤ A|x − y|s.

For every open set U in X, we set

HL(U) = {u ∈ C2(U) : Lu = 0}.

It is well known (e.g. by [RMH]) that (
� d ,HL) is a Brelot space and the L–

regular sets are the same as for Laplacian. By [HS84], every C1,1 domain V on
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� d admits a Green function LGV which is comparable to the Green function GV

of the Laplacian.
Let α > 0. We define the (generalized) Ginzburg–Landau operator L1 by

L1u = Lu + u(1 − |u|2α).
For every open set U , we set

H(U) =

{
u ∈ (U) :

(
u +

∫ L

GV
t u(t)

(
|u(t)|2α−1

)
dt

)
∈ HL(V ) for V ⊂ V ⊂ U

}

where LGV is the Green function for L on V .
We denote by M(x) the biggest eigenvalue of the symmetric real Matrix

(aij(x)) , by B(x) =
∑d

i=1 |bi(x)|. By the hypothesis 2) on L, M(·) and B(·)
are bounded, we set M and B respectively their lower bound.

Proposition 3.1. Let x0 ∈ � d , R > 0 and B = B(x0, R). Then there exists
on B, v ∈∞ (B) positive such that L1v ≤ 0 and limx 7−→z v(x) = +∞ for every
z ∈ ∂B(x0, R).

Proof. We consider vλ(x) = λ
(R2−r2(x))1/α , r(x) = ‖x−x0‖2 < R2, an easy calculati-

on shows that for λ ≥ λ0(R) = [4C1MR2+C2BR3+R4]1/2α with C1 = 1
α

(
1
α

+ 1
)
,

C2 = 2
α
, vλ satisfies the required statement of the proposition.

In the following we set v := λ0(R)

(R2−r2)1/α

Remark 3.2. We have v(x) ≥ λ0(R)

(R2)1/α ≥ (R4)1/2α

(R2)1/α = 1 for every x ∈ B(x0, R).

Proposition 3.3. v ∈∗ H(B).

Proof. Same as in [B2], Theorem 4.5.

Theorem 3.4 (Hervé’s Inequality). Let x0 ∈ � d , R > 0, B(x0, R), K1 =

4( 1
α
( 1

α
+ 1))M and K2 = 2

α
B. Then |u(x0)| ≤

[
1 + K1

R2 + K2

R

]1/2α
for every u ∈

H(B).

Proof. Let 0 < s < R and u ∈ H(B) then u ∈ H(B(x0, s)) and u is bounded in

B(x0, s). Let g ∈ C2(B(x0, s)) given by g(x) = λ0(s)

(s2−r2)1/α , then g ∈ ∗H(B) and

limx 7−→z g(x) = +∞ ≥ lim supx 7−→z u(x) = u(z) for every z ∈ ∂B(x0, s). Remark
3.2 yields g ≥ 1 and then corollary 2.4 implies u ≤ g. We therefore have u(x0) ≤
g(x0) = λ0(s)

(s)1/2α . Since −u is again in H(B), we also have −u(x0) ≤ λ0(s)

(s)1/2α . Thus

|u(x0)| ≤
[
1 + K1

s2 + K2

s

]1/2α
for every s ∈ [0, R[ and |u(x0)| ≤

[
1 + K1

R2 + K2

R

]1/2α
.

In the sequel we set σ(R) =
[
1 + K1

R2 + K2

R

]1/2α
.

Corollary 3.5. For every u ∈ H(
� d) we have |u(x)| ≤ 1 for every x ∈ � d .

8



Corollary 3.6 (Generalized Hervé-Harnack inequality, see [B1]). For
every open set U and every compact subset K of Ω there exists C > 0 such that
|u(x)| ≤ C for every x ∈ K and u ∈ H(U).

Proof. We have |u(x)| ≤ σ(d(K, �U)), where d(K, �U) = inf{‖x− y‖, x ∈ K, y ∈
�U}.

Corollary 3.7. For every open set U , H(U) is compact for the local uniform
convergence.

Proof. Let (un)n ⊂ H(U) and V ⊂ V ⊂ U , (un) is bounded in V and gn = un +∫
GV

t un(t)(|un(t)|2α−1)dt is L–harmonic on V and bounded on V since (
� d ,HL)

is a harmonic space, by [CC, Theorem 11.1.1], (gn) has a convergent subsequence,
without loss of generality we assume that (gn) converges to g locally uniformly
on V . Since (un) bounded, by [H1], the set

{∫
GV

t u(t) (|un(t)|2α − 1) dt, n ∈ �
}

is
equicontinuous and therefore has a locally uniformly convergent subsequence, so
(un), by the Lebesgue convergence theorem, we get g = u +

∫
GV

t u(t)(|u(t)|2α −
1)dt. Since g ∈ HL(V ), we hence obtain u ∈ H(V ). Choosing an exhaustion of U
by relatively compact open sets and a diagonal procedure, we obtain the desired
result.

Applications 3.8. Let L = ∆, α = 1 and d = 2. We obtain here the real
solutions of the classical Ginzburg–Landau equation: ∆u = u(|u|2−2) . In [HH96],
M. Hervé and R.M.Hervé obtained in 2 for complex valued solutions u on B(x0, R)
the following inequality

|u(x0)|2 ≤
1

2
+ sup

(
12

R2
,

√
1

4
+

48

R4

)
= σ2

0(R).

We have σ(R) ≤ σ0(R) if and only if R ≤ 2
√

2, and for real solutions σ0(R)
is not the best majorizing constant in the Hervés Inequality . We set σ̃(R) =

σ(R) for R ≤ 2
√

2, σ̃(R) =
(

1
2

+ 12
R2

)1/2
for 2

√
2 ≤ R ≤ (273)1/4 and σ(R) =(

1
2

+
(

1
4

+ 48
R4

)1/2
)1/2

for R ≥ (273)1/4. We therefore have |u(x0)| ≤ σ̃(R) for

every real continuous solution of ∆u = u(|u|2−1) on B(x0, R) in the distributional
sense. However, for complex valued solutions of the Ginzburg–Landau in 2, we will
see that the σ0(R) obtained by Hervé is until now the best bound.

4 Generalized Ginzburg–Landau equation in
� d,d ≥

2. The complex case

For every A ⊂ � d , we shall add � for functions from A to � , e.g. C(A, � ), B(A, � ),
H(A, � ). We will consider the same operator L as in the previous section with
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the following additional condition. The coefficients of L are sufficiently smooth so
that L admits an adjoint L∗ in the distributional sense and the solutions in the
distributional sense on an open set U are C2(U). We recall that the L-regularity of
the boundary points of an open set U is (e.g. by [RMH]) the same as the classical
regularity for the Laplacian on

� d . We shall say regular instead of L-regular.
We are interested among others in the following Dirichlet problem. Let f ∈

C(∂U, � ) be a continuous complex valued function at the boundary of U . We look
for a continuous complex valued solution u ∈ (U, ) of the following system

(∗)
{

Lu + u(1 − |u|2α) = 0 on U in the distributional sense,
limx 7−→y u(x) = f(y) for every y regular in ∂U

where |u|2 = (Re u)2 + (Im u)2.
In what follows, we will prove in contrast to many other proofs and without

any assumption on the regularity of the boundary, but unfortunately for “small”
open regular subset, that the problem (∗) has a solution. The unicity will be
treated in the following way: For every K > 0, there exist δ(K) such that for
every relatively compact open set U which diameter smaller than δ(K) and every
f ∈ C(∂U, � ) with ‖f‖∞ ≤ K, there exists on U a unique solution of (∗).

Let V = {regular open sets U such that supx∈U

∫
LGU

t (x)λ(dt) < 1}. Where
LGU is the Green function for L and U . It is then easy to see that V is a basis
of regular open sets in X. Let V ∈ V and f ∈ C(∂V, � ). Then f = f1 + if2 with
fi ∈ C(∂V ). We set HV f := LHV f1 + iLHV f2 where LHV fi are the solution of
the Dirichlet problem associated V and fi for i ∈ {1, 2}. Let K > 0 such that
‖f‖ + K supx∈V

∫
GV

t (x)dt ≤ K, where ‖f‖ = ‖f1‖∞ + ‖f2‖∞. Let E = {v ∈
Cb(U, � ), ‖v‖ ≤ K}, ‖v‖ = ‖v1‖∞ + ‖v21‖∞ whenever v = v1 + iv2, ‖vi‖∞ =
sup{|vi(x)|, x ∈ U}. For v ∈ E, we denote by T (v) the following function:

T (v) := (I + Kv)
−1(HV f +

∫
GV

t v(t)dλ(t)),

where Kvf =
∫

GV
t |v(t)|2αf(t)dt, |v|2 = (Rev)2 + (Imv)2. It is well known

that (I + Kv) invertible (see among others [Me68], [BHH]). Moreover, we have:
‖T (v)‖ ≤ ‖f‖+ ‖v‖

∫
GV

t dλ(t) which yields ‖T (v)‖ ≤ ‖f‖+ K
∫

GU
t dλ(t) ≤ K .

We hence obtain that T (E) ⊂ E. A fix point of T gives a solution of (∗) on V .

Proposition 4.1. T (E) is a compact subspace of E.

Proof. We use an idea similar to [H2]. Let U be a relatively compact subset of
� d with V ⊂ V ⊂ U and vn ∈ E . We set for g ∈ B(V ) : g̃ = g on V and g̃ = 0
on U � V ,

hn :=

∫
GU

t

�

Re T (vn)|ṽn|2α(t) and h′
n =

∫
GU

t (
�

Re vn)(t)dt

hence (hn) and (h′
n) are relatively compact for the local uniform convergence

and since Re(T (vn)) = HV f1 +
∫

GV
t Re(vn)(t)dt −

∫
GV

t Re(T (vn))|vn|2α(t)dt ,

10



Re(T (vn)) is then compact for the uniform convergence on V . The same proof is
valid for Im(T (vn)).

Proposition 4.2. T is continuous on E for the uniform convergence.

Proof. Let (vn)n and v in E such that (vn) converges uniformly on V to v. Since T
is compact for the uniform convergence on E, there exists a subsequence T (vρ(n))
which is uniformly convergent to g on V . Since

HUf +

∫
GV

tvρ(n)(t)dλ(t) = T (vρ(n)) +

∫
GV

t T (vρ(n))|vρ(n)(t)|2αdλ(t)

we get

HUf +

∫
GV

t v(t)dλ(t) = g +

∫
GV

t g(t)|v(t)|2αdλ(t)

= T (v) +

∫
GV

t T (v)|v(t)|2αdλ(t).

Therefore g = T (v) and thus T (vn) converges uniformly to T (v) and we have the
desired result.

Theorem 4.3. There exists u ∈ Cb(V, � ) satisfying (∗).

Proof. By the fixpoint theorem of Leray-Schauder, T admits on E a fixpoint u.
Therefore, u fulfills the desired result.

In the sequel we shall discuss the unicity of solution of (∗). Let U be an open
subset of

� d , h ∈ H(U, � ) and v = |h|2. The assumptions on L yield by an easy
verification the following useful result:

Proposition 4.4. We have 1
2
Lv ≥ v(vα − 1) in the distributional sense on U .

Corollary 4.5. Let V ∈ V, f ∈ C(∂V, � ) ‖f‖∞ = sup{|f(x)|, x ∈ ∂V } and h a
solution of (∗) corresponding to V and f . Then we have |h| ≤ max(‖f‖∞, 1). Let
c = max(‖f‖∞, 1) then c ≥ 1 and 1

2
Lc = 0 ≤ c(cα − 1). Corollary 2.4 yields the

desired result.
The following lemma is very useful for the investigation of the unicity of

solutions of the problem (∗).

Lemma 4.6. Let z, z′ ∈ and α > 0. Then

∣∣z|z|2α − z′|z′|2α
∣∣ ≤ |z − z′|(1 + 2α) max(|z|2α, |z′|2α).
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Theorem 4.7. a) let Ṽ := {V ∈ V : supx∈V

∫
GV

t (x)λ(dt) < 1
2+2α

}, then for

every V ∈ Ṽ and f ∈ C(∂V, � ) with ‖f‖∞ ≤ 1, there exists a unique solution of
(∗) associated with V and f .
b) For every K > 1 let VK := {V ∈ V : supx∈V

∫
GV

t (x)λ(dt) < 1
1+(1+2α)K2α} ,

then for every V ∈ VK and every f ∈ C(∂V, � ) with ‖f‖∞ ≤ K, there exists a
unique solution of (∗) associated with f and V .

Proof. Let V ∈ V, f ∈ C(∂V, � ) u and u′ be solutions of (∗) associated with V
and f . Let β = supx∈V

∫
GV

t (x)λ(dt) , the definition of the solutions u and u′

gives that

u − u′ = (I −
∫

GV
t )−1(

∫
GV

t (u′(t)|u′(t)|2α − u(t)|u(t)|2α)λ(dt)).

By the lemma 4.6 and corollary 4.5 we have

|u − u′| ≤ (I −
∫

GV
t )−1(

∫
GV

t |(u − u′)(t)|(1 + 2α)(max(‖f‖∞, 1)2α)),

hence

‖u − u′‖∞ ≤ (1 + 2α)(max(‖f‖∞, 1))2α‖u − u′‖∞
β

1 − β
.

If (1 + 2α)(max(‖f‖∞, 1))2α β
1−β

< 1, we then have the unicity.
An easy calculation yields the desired results.

Applications 4.8. Let L = ∆ on
� d , d ≥ 2, α = 1, we then obtain the classical

Ginzburg–Landau Equation.

Lu = ∆u − u(|u|2 − 1) = 0.

In what follows, we give a characterization of the Balls B with radius R which
belong to the basis V , V −K for K > 1 , constructed in the previous theorem 4.7

Theorem 4.9. Let d > 2, R > 0 and x0 ∈ � d . We have supx∈B

∫
GB

t (x)dt =
Γ(d/2)

4dπd/2 R
2.

Proof. Let GB such that ∆GB
t = −εt on B in the distributional sense , then GB

is the Green function for the Laplace operator on B, we have :

I =

∫
GB

t (x)dt =

∫
GB(x, t)dt =

∫ R

0

(

∫
G(x, rz)σd−1(dz))rd−1dr

where (t = rz, ‖z‖ = 1) and σd−1 is the surface measure on the unit sphere on
� d . Hence
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I =

∫ ‖x−x0‖

0

(

∫
G(x, rz)σd−1(dz))rd−1dr +

∫ R

‖x−x0‖

(

∫
G(x, rz)σd−1(dz))rd−1dr

= cd

∫ ‖x−x0‖

0

(
1

‖x − x0‖d−2
− 1

Rd−2
)rd−1dr + cd

∫ R

‖x−x0‖

(
1

rd
− 1

Rd−2
)rd−1dr

= cd(
1

‖x − x0‖d−2
− 1

Rd−2
)
‖x − x0‖d

d
+ cd

[
r2

2
− 1

d Rd−2
rd

]R

‖x−x0‖

=
d − 2

2d
cd

[
R2 − ‖x − x0‖2

]
.

Since cd = Γ(d/2)

2(d−2)πd/2 we get I = Γ(d/2)

4dπd/2 [R2 − ‖x − x0‖]. Thus supx∈B

∫
GB

t (x)dt =
Γ(d/2)

4dπd/2 R
2.

Let Ṽ, VK be the base determined in theorem 4.7 and a ball B in
� d with

R > 0.We have the following results:

Corollary 4.10. a) B ∈ V if and only if R <
(

4dπd/2

Γ(d/2)

)1/2

b) B ∈ Ṽ if and only if R <
(

dπd/2

Γ(d/2)

)1/2

.

c) For K > 1, B ∈ VK if and only if R <
(

4dπd/2

Γ(d/2)(1+3K2)

)1/2

.

Theorem 4.11. Let d = 2, R > 0 and x0 ∈2 and B a ball with radius R and
center x0 . We have supx∈B

∫
GB

t (x)dt = 1
8π

R2.

Proof. Let GB be the Green function for the Laplace operator on B such that
∆GB(·, t) = −εt in the distributional sense. Let I =

∫
GB

t dt then

I =

∫ R

0

(∫
G(x, rz)σ2(dz)

)
r dr

=

∫ ‖x−x0‖

0

1

2π

(
log

R

‖x − x0‖

)
r dr +

∫ R

‖x−x0‖

1

2π

(
log

R

r

)
r dr

and an elementary calculus yields I = 1
8π

[R2 − ‖x− x0‖2] and the desired result.

Corollary 4.12. Let d = 2, R > 0 and a ball B with radius R , then

a) B ∈ V if and only if R < 2(2π)1/2.
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b) B ∈ Ṽ if and only if R < (2π)1/2.

c) For K > 1 : B ∈ VK if and only if R <
(

8π
1+3K2

)1/2
.

Proposition 4.13. Let U be an open regular set (for the Lapace equation) in
� d and f ∈ C(∂U) real. Then there exists a real solution u of the problem (∗)
associated with U and f .

Proof. Let K = ‖f‖∞. Without loss of generality we assume that K ≥ 1. It is
easy to show that there exists a compact set C ⊂ U such that U � C regular
and U � C ∈ VK , furthermore there exists a recoverment of C by a finite fami-
ly of regular sets V1, . . . , Vp such that C ⊂ Up

i=1Vi ⊂ V. Let V0 = U �C and (Un) =
(V0, V0, V1, V0, V1, V2, V0, V1, V3,
V0, V1, V3, . . . ). The proof is then the same as in [BHH] which uses only the
minimum principle for Vi and the sheaf properties valid in (X,H) by the first
section, here H is the sheaf of real solutions of (∗).

5 Hervé’s Inequality for complex solutions of

the generalized Ginzburg–Landau equation on
� d(d ≥ 2).

We consider here an operator L over
� d(d ≥ 2) with the same assumptions as in

the previous section. We will keep here the same notations as before.

Theorem 5.1 (Hervé’s inequality). Let R > 0, x0 ∈ � d , K1 = 4
α

(
2
α

+ 1
)
M ,

K2 = 2
α
B. Then |u(x0)| ≤

[
1 + K1

R2 + K2

R

]1/2α
for every u ∈ H(B(x0, R), � ).

Proof. Let g = |u|2 = (Re u2 + Im u2), by proposition 4.4 we then have 1
2
Lg ≥

g(gα − 1) in the distributional sense. For every open set U we set

H̃(U) = {h ∈ C(U) h +
∫

1
2

LGt h(t)(|h(t)|α − 1)dt ∈ H 1
2
L(V ) for every open

set V ⊂ V ⊂ U}. Since 1
2
L satisfies the same assumptions as L, (X, H̃) is a

Bauer space and by section 1, g ∈ ∗H̃(B(x0, R)). Let s < R and v =
λ0(α

2
,s)

(s2−r2)1/α ,

r = ‖x − x0‖ < s, λ0(
α
2
, s) = [2C1MR2 + 1

2
C2BR3 + R4]1/α, C1 = 2

α
( 2

α
+ 1),

C2 = 4
α
. The same proof as in proposition 3.1 yields v ∈∗ H̃(B(x0, r)). By the

minimum principle in corollary 2.4 we get

g ≤ v on B(x0, s) and hence

g(x0) ≤ [1 +
K1

s2
+

K2

s
]1/α. Since g(x0) = |u(x0)|2, we get

|u(x0)| ≤ [1 +
K1

s2
+

K2

s
]

1
2α for every s < R, this yields the desired inequality.

14



In what follows we set σ̃(r) :=
[
1 + K1

R2 + K2

R

] 1
2α

Corollary 5.2. Classical Ginzburg–Landau equation. Let L = ∆, α = 1, we then
have for every R > 0, x0 ∈

� d and u ∈ H(B(x0, R), ) |u(x0)| ≤ [1 + 12
R2 ]

1/2.

Proof. We have M = 1, B = 0 and then K2 = 0 and K1 = 4(2 + 1) = 12. The
previous theorem yields |u(x0)| ≤ [1 + 12

R2 ]
1/2 for every u ∈ H(B(x0, R), � ).

Remark 5.3. a) We have σ0(R) ≤ (1+ 12
R2 )

1/2 where σ0(R) = 1
2
+sup( 12

R2 ,
√

1
4

+ 48
R4 )

is the bound obtained for d = 2 by Hervé in [HH96] by other methods.
b) By the same proofs as in corollaries 3.5, 3.6 and 3.7 we obtain the followi-
ng results for continuous complex solutions of the generalized Ginzburg–Landau
equation Lu = u(|u|2α − 1) in the distributional sense, indeed we have:

i) For every u ∈ H(
� d , � ) |u(x)| ≤ 1 for every x ∈ � d .

ii) For every open set U in
� d and every compact subset K ⊂ U there exists

C > 0 such that |u(x)| ≤ C for every x ∈ K. C is every constant ≥
σ̃(d(K, �U)).

iii For every open set U , (U, ) is compact for the local uniform convergence.

6 Hervé–Harnack Inequality for complex valued

solutions of the generalized Ginzburg–Landau

Equation.

Let L be a differential operator with the same form and assumptions as in section
4. Let α > 0 and for every open set U in

� d we set:

H1(U, � ) = {u ∈ C(U, � ) : Lu = u(|u|2α − 1) in D.S on U with |u| ≤ 1}.

The aim of this section is the proof of the following result:
Let U be a domain in

� d , (un)n ⊂ H1(U, � ) and a ∈ � with |a| = 1. Then the
following properties are equivalent:

1) un converges locally uniformly to the constant function a on U .

2) There exists x ∈ U such that (un(x)) converges to a.

For this purpose we shall prove for d = 2 a similar inequality as by Hervé in
[HH96] and for d ≥ 3 an other inequality which yields the desired convergence
results.
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Proposition 6.1. Let x ∈ � d , R > 0 and BR = B(x, R), then there exists K > 0
such that for every r < inf(R, 1) we have

∫

S(x,r)

(1 − |u(y)|)σ(dy) ≤ K(1 − |u(x)|) for every u ∈ H1(B, � )

where S(x, r) = {y ∈ � d · ‖x − y‖ = r} , σ =
σr

d−1

σr
d−1(1)

and σr
d−1 is the surface

measure on the sphere S(x, r).

Proof. Let u ∈ H1(B, � ) and v = |u|2, we have by proposition 4.4, 1
2
Lv − vα+1 +

v ≥ 0. Since L1 = 0, we get 1
2
L(1 − v) ≤ v − vα+1 ≤ α(1 − v). Hence 1 − v is a

superharmonic function on B for the linear harmonic structure given by HL−2α

where for every open set U in X, HL−2α(U) = {u ∈ C2(U) : Lu− 2αu = 0}. It is
well known (see e.g. [Se], [A] or [HS83]) that there exists C ≥ 1 such that for every
x ∈ � d , ρ ∈ ]0, 1[ and f ∈ C(∂B(x, ρ)) we have 1

C
∆HBρf ≤ αHBρf ≤ C∆HBρf ,

where ∆HBρ and αHBρ are respectively the harmonic kernels associated with Bρ,
∆ and L − 2α. For ρ = r and since 1 − v is superharmonic on B(x, R) we have

∆HBr(1 − v)(x) =

∫

S(x,r)

(1 − v(y))σ(dy) ≤ C αHBr(1 − v)(x) ≤ C(1 − v)(x)

for every r with r < inf(R, 1). Since

1 − |u(y)| ≤ (1 − |u(y)|2) ≤ 2(1 − |u(y)|).∫

S(x,r)

(1 − |u(y)|)σ(dy) ≤ 2C(1 − |u(x)|),

K = 2C yields then the desired inequality.

In the following we assume d = 2.

Theorem 6.2. Let x ∈2, R > 0 and B = B(x, R), then for every r ∈ ]0, inf(R, 1)[ ,
there exists Kr = K(r) such that (1 − |u(y)|) ≤ Kr [1 − |u(x)| ] for every y ∈
B(x, r) and every u ∈ H1(B, � ).

Proof. Let x ∈ � 2 and u ∈ H1(B, � ) with u(x) ∈ �
+ . Let v = |u|2. By an

easy calculation we have (1 − vα) ≤ sup(1, α)(1 − v). Let r ∈ ]0, inf(R, 1)[ ,

r0 = r+inf(R,1)
2

, B0 = B(x, r0) and LGB0 be the Green function for L and B0, by
[HS83], there exists C > 1 such that 1

C
∆G ≤ LGB0 ≤ C∆G.

Let h := u −
∫

LGB0(·, y)u(y)(1 − |u(y)|2α)dy, then h, Re h, Imh are L–
harmonic and by the maximum principle their modulus is smaller than 1. Let

(I) I := I(y) =|
∫

LGB0(y, z)u(z)[1 − |u(z)|2α]dz.
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We set G = ∆GB0 The comparison of the green functions on B0 yields
I ≤ C sup(1, α)

∫
B0

G(y, z)(1−v(z))dz = C1

∫ r0

0
(
∫

S(x,t)
G(y, z)(1−v(z))σ(dz)t dt)

where C1 = C sup(1, α). Hence

I ≤ C1

∫ r0

0

sup
z∈S(x,t)

G(y, z)(

∫

S(x,t)

(1 − v(z))σ(dz)t dt).

By the previous proposition we obtain:

I ≤ C1(

∫ r0

0

sup
z∈S(x,t)

G(y, z)t dt)K(1 − v(x)).

Since d = 2, an easy calculation yields

sup
z∈B0

(

∫ r0

0

sup
z∈S(x,t)

G(y, z)t dt) = C2 < +∞.

Therefore, I ≤ C1C2K [ 1 − |v(x)| ] ≤ 2C1C2K [ 1 − |u(x)| ]. On the other hand
since Re h is L1–harmonic on B(x0, r0) and r < r0, by the Harnack inequality for
(
� 2 ,HL) there exists C3 > 0 such that (1−Re h(y)) ≤ C3(1−Re h(x)) for every

y ∈ B(x, r). By (I) we have:

(1 − |u(y)|) ≤ (1 − |h(y)|) + I(y)

≤ (1 − Re h(y)) + I(y)

≤ C3(1 − Re h(x)) + I(y).

Again, from (I) we have

1 − Re h(x) ≤ 1 − Re u(x) + I(x), hence

(1 − |u(y)|) ≤ C3(1 − Re u(x)) + C3I(x) + I(z)

≤ [ C3 + 2C1C2K(1 + C2) ](1 − Re u(x)).

Since u(x) ∈ �
+ we have Reu(x) = |u(x)| and therefore (1 − |u(y)|) ≤ Kr(1 −

|u(x)|) with Kr = C3 + 2C1C2K(1 + C2). Let u ∈ H1(B, � ) and u(x) 6= 0 we set

v(y) = |u(x)|
u(x)

u(y). Then v ∈ H1(B, � ) with v(x) = |u(x)| ∈ �
+ then (1−|v(y)|) ≤

Kr(1 − |v(x)|) which yields the required statement since |v| = |u|.

Remark 6.3. The previous proof is not valid for higher dimension d ≥ 3 since
supy∈B0

∫ r0

0
supz∈S(x,t)

∆GB0(y, z)t dt = +∞.

Corollary 6.4. Let x0 ∈ � d and R > 0 then for every 0 < R′ < R there exists
C = C(R′, R) such that

(1−|u(x)|) ≤ C[ 1−|u(x0)| ] for every x ∈ B(x0, R
′) and every u ∈ H1(B(x0, R), � ).
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Corollary 6.5. Let U be an open domain and K ⊂ U a compact subset of U ,
then there exists CK ≥ 1 such that

(1 − |u(x)|) ≤ CK [ 1 − |u(y)| ] for every x, y ∈ K and every u ∈ H1(U, � ).

In the following we consider d ≥ 3 and q > d
2
.

Theorem 6.6. Let x ∈ � d , R > 0 and B = B(x, R), then for every r ∈
]0, inf(R, 1)[ , there exists Kr = K(r, p, L, α, d) such that (1 − |u(y)|) ≤ Kr[ 1 −
|u(x)| ] 1

q for every y ∈ B(x, r) and every u ∈ H1(B, � ).

Proof. Let u ∈ H1(U, � ) , r ∈ ] 0, inf(R, 1)[ , r0 = r+inf(R,1)
2

and B0 = B(x, r0).
Then r0 < inf(R, 1) , u ∈ H1(B0, � ) and h = u−

∫
LGB0(·, t)u(t)(1−|u(z)|2α)dt is

in HL(B0). We have (1−|u(y)|) ≤ (1−|h(y)|)+ |
∫

LGB0(y, t)u(t)(1−|u(t)|2α)dt|.
We set I(y) = |

∫
LGB0(y, t)u(t)(1−|u(t)|2α)dt|,it follows I(y) ≤

∫
LGB0(y, t)(1−

|u(t)|2α)dt. Let p > 1 such that 1
p

+ 1
q

= 1, q > d
2

implies p < d
d−2

, by the Hölder
inequality we get
I(y) ≤ (

∫
(LGB0(y, t))pdt)1/p × (

∫
B0

(1 − |u(t)|2α)qdt)1/q. By (e.g. [HS83]) there

exists C > 1 such that LGB0 < C∆GB0 and since ∆GB0(t, y) ≤ 1
‖t−y‖d−2 we have

(
∫

(LGB0(y, t))p dt) ≤ C(
∫

B0

1
‖t−y‖p(d−2) dt)1/p.

By an easy verification we get C1 := C1(r, p) := C supy∈B0
(
∫

B0

1
‖t−y‖p(d−2)

dt)1/p <

+∞. Therefore, I(y) ≤ C1(
∫

B
(1 − |u(t)|2α)qdt)1/q. Let v = |u|2 since (1 − vα) ≤

sup(1, α)(1−v). It follows from 0 ≤ 1−v ≤ 1 and q > 1 that (1−v)q ≤ (1−v) and
I(y) ≤ C1 sup(1, α)(

∫
B0

(1− v(t))dt)1/q. We have
∫

B0
(1− v(t))dt =

∫ r0

0
(
∫

S(x,s)
(1−

v(z))σ(dz))sd−1ds and by proposition 6.1 we have then
∫

B0
(1 − v(t))dt ≤ K(1 −

v(x))
∫ r0

0
sd−1ds ≤ K

d
(1 − v(x)). Therefore,

I(y) ≤ C1

(
K

d

)1/q

(1 − v(x))1/q

≤ 2C1

(
K

d

)1/q

(1 − |u(x)|)1/q.

On the other hand since Re h is harmonic and smaller than 1, the Harnack inequa-
lity in (

� d ,HL) yields the existence of γr such that (1−|h(y)|) ≤ (1−Re h(y)) ≤
γr(1 − Re h(x)) for every y ∈ B(x0, r). Furthermore, we have (1 − Re h(x)) ≤
(1 − Reu(x)) + I(x). Let C2 = 2C1

(
K
d

)1/q
and (1 − Reh(x)) ≤ (1 − Re u(x)) +

C2(1 − |u(x)|)1/q. Therefore,

(1 − |u(y)|) ≤ (1 − Re h(y)) + c2(1 − |u(x)|)1/q

≤ γr(1 − Re h(x)) + C2(1 − |u(x)|)1/q

≤ γr(1 − Re u(x)) + 2C2(1 − |u(x)|)1/q.
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Let u(x) 6= 0 and g(y) = |u(x)|
u(x)

u(y), then g is even in H1(B0, � ) with |g| = |u|,
hence

(1 − |g(y)|) ≤ γr(1 − Reg(x)) + 2C2(1 − |u(x)|)1/q

≤ γr(1 − |u(x)|) + 2C2(1 − |u(x)|)1/q.

Since 0 < 1
q
≤ 1 and (1 − |u(x)|) ≤ 1 we have (1 − |u(x)|) ≤ (1 − |u(x)|)1/q. The

required inequality is then given by Kr = γr + 2C2.

Corollary 6.7. Let x ∈ � d , d ≥ 3 and R > 0. Then for every 0 < R′ < R there
exists a constant C = C(R′, R, p, α, L1, d) such that (1−|u(y)|) ≤ C(1−|u(x)|)1/q

for every y ∈ B(x, R′) and u ∈ H1(B(x, R), � ).

Corollary 6.8 (Hervé–Harnack inequality). Let U be a domain in
� d , d ≥ 3

and K ⊂ U compact, then there exists CK such that (1 − |u(x)|) ≤ CK(1 −
|u(y)|)1/q for every x, y ∈ K and every u ∈ H1(U, � ).

Corollary 6.9. Let U be a domain in
� d , d ≥ 2, (un)n ⊂ H1(U, � ) and β ∈ �

with |β| = 1 then the following properties are equivalent.

1) (un)n converges locally uniformly to β on U .

2) There exists x ∈ U such that un(x) converges to β.

Proof. We have only to prove 2 =⇒ 1. By the Hervé–Harnack inequality, |un|
converges locally uniformly to 1. On the other hand,by section 5 (un) is relatively
compact for the local uniform convergence. Let uρ(n) be a subsequence of (un)
which is locally uniformly convergent to u, then |u| = 1 and hence since Lu =
u(|u|2α − 1), we get Lu = 0. Therefore u = β.

In the sequel we will show that the previous inequalities are also valid if
we replace the constant 1 by m ∈ ]0 + ∞[ in the generalized Ginzburg–Landau
Equation, i.e., Lu = u(|u|2α − m2α). We set Hm(U, � ) = {u ∈ (U, ) : Lu =
u(|u|2α − m2α) in the distributional sense with |u| ≤ m}

Theorem 6.10. Let m ∈ ]0, +∞[ and α > 0. Let U be a domain in
� d and K

be a compact subset of U , then we have the following:

1) For d = 2 there exists CK such that (m − |u(x)|) ≤ CK(m − |u(y)|) for
every x, y ∈ K and every u ∈ Hm(U, � ).

2) Let d ≥ 3, q > d
2
, then there exists CK > 1 such that (m − |u(y)|) ≤

CK(m − |u(x)|)1/q for every x, y ∈ K and every u ∈ Hm(U, � ).
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Proof. Let u ∈ Hm(U, � ) then Lu = u(|u|2α − m2α) with |u| ≤ m. Let v = u
m

,
then |v| ≤ 1 and Lv = 1

m
Lu = 1

m
u(|u|2α − m2α) = v × m2α(|v|2α − 1) then v is a

solution of L1v = v(|v|2α − 1) where L1 = 1
m2α L, L1 satisfies the same conditions

as L, hence by the Hervé–Harnack inequalities (corollary 6.5 and 6.8) we have:
For d = 2, there exists a constant CK > 1 such that

(1 − |v(y)|) ≤ CK [ 1 − |v(x)| ] and hence

(m − |u(x)|) ≤ CK [ m − |u(x)| ] for every x, y ∈ K.

For d ≥ 3, there exists λK > 1 such that

(1 − |v(y)|) ≤ λK(1 − |v(y)|)1/q which gives

(m − |u(y)|) ≤ mCKm−1/q(m − |u(y)|)1/q.

Theorem 6.11. Let m ∈ ]0, +∞[ , U be a domain in
� d and (un) be a sequence of

continuous complex solutions in the distributional sense of L1u = u(|u|2α −m2α)
with |un| ≤ m for every n ∈. Let β ∈ with |β| = m then the following properties
are equivalent:

1) (un) converges locally uniformly to β on U .

2) There exists x ∈ U such that un(x) converges to β.
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