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Abstract. We give a review of recent results obtained by the authors
on the existence, uniqueness and a priori estimates for Euclidean Gibbs
measures corresponding to quantum anharmonic crystals. Especially we
present a new method to prove existence and a priori estimates for Gibbs
mesures on loop lattices, which is based on the alternative characteriza-
tion of Gibbs measures in terms of their logarithmic derivatives through
integration by parts formulas. This method allows us to get improve-
ments of essentially all related existence results known so far in the lit-
erature. In particular, it applies to general (non necessary translation
invariant) interactions of unbounded order and in�nite range given by
many-particle potentials of superquadratic growth. We also discuss dif-
ferent techniques for proving uniqueness of Euclidean Gibbs measures,
including Dobrushin�s criterion, correlation inequalities, exponential de-
cay of correlations, as well as Poincaré and log-Sobolev inequalities for
the corresponding Dirichlet operators on loop lattices. In the special case
of ferromagnetic models, we present the strongest result of such a type
saying that uniqueness occurs for su¢ ciently small values of the particle
mass.
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1 Introduction

The aim of this paper is twofold: First, we give the reader an elementary intro-
duction in the mathematical theory of quantum lattice systems (QLS, for short).
In Statistical Physics they are commonly viewed as models for quantum crys-
tals (see, e.g., [1], [30], [33]). Second, we present recent results on the existence,
uniqueness and a priori estimates for the corresponding Euclidean Gibbs mea-
sures obtained by the authors in [2]�[13], and we demonstrate how methods of
Stochastic Analysis can successfully be applied to this topic.

According to common knowledge, a mathematical description of equilibrium
properties of quantum systems might be given in terms of their Gibbs states
de�ned on proper algebras of observables (cf. [20]). Such an algebraic approach
is especially applicable to spin models with �nite dimensional physical Hilbert
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spaces associated with every single particle. But, unfortunately, in the realiza-
tion of this general concept for the quantum lattice systems considered in our
papers there occur important di¢ culties (see, e.g., the discussion in [3]). In or-
der to overcome these di¢ culties we shall take the Euclidean (or path space)
approach, which is conceptually analogous to the well-known Euclidean strat-
egy in quantum �eld theory (see, e.g., [30], [33], [47]). This analogy was pointed
out and �rst implemented to quantum lattice systems in [1]; for recent devel-
opments see the review articles [13], [3] and an extensive bibliography therein.
Actually, the Euclidean approach remains so far the only method which allows
to construct and study Gibbs states for in�nite systems of quantum particles
described by unbounded operators. Brie�y speaking, it transforms the problem
of giving a proper meaning to a quantum Gibbs state G� into the problem of
studying a certain Euclidean Gibbs measure � on the loop lattice 
 := [C(S�)]Z

d

(cf. Sect. 3 below for rigorous de�nitions). Here � := 1=T > 0 is the inverse (ab-
solute) temperature and C(S�) is the space of continuous functions (i.e., loops)
on a circle S� �= [0; �] of length �: For a more detailed discussion of the rela-
tions between quantum and Euclidean Gibbs states we refer to [3], [5] (for an
explanation of main ideas see also Sect. 2 below).

As a consequence, various probabilistic techniques become available for in-
vestigating equilibrium properties of quantum in�nite-particle systems (cf. the
review on this account included in Sect. 5). But, as compared with classical
lattice systems, the situation with Euclidean Gibbs measures is much more com-
plicated, since now the spin (i.e., loop) spaces themselves are in�nite dimensional
and their topological features should be taken into account carefully. Also, as
is typical for non-compact spin spaces, we have to restrict ourselves to the set
Gt of tempered Gibbs measures �; which we specify by some natural support
conditions (cf. de�nitions (15) and (22) below).

Among possible applications of Stochastic Analysis in Quantum Statistical
Physics, we especially present a new method for proving existence and a priori
estimates for tempered Euclidean Gibbs measures, which is based on the alter-
native description of Gibbs measures in terms of integration by parts and was
developed by the authors in [6]�[8], [13]. It allows us to obtain improvements
and generalizations of essentially all corresponding existence results for Gibbs
measures known so far in the literature. Moreover, this method seems to be quite
universal for lattice models and gives additional structural inside.

The organization of this paper is as follows. Section 2 is devoted to general
aspects of the theory of Euclidean Gibbs measures. Here we introduce the mod-
els of quantum lattice systems (�anharmonic crystals�), concentrating on the
simplest case of the QLS Model I with harmonic pair interaction between near-
est neighbors only. In Sect. 3 we recall details on the corresponding Gibbsian
formalism for Euclidean Gibbs measures � on the loop lattice 
: In Subsect. 4.1
we formulate our main Theorems 1�6 on the existence, uniqueness and a priori
estimates for tempered Euclidean Gibbs measures � 2 Gt. In Subsect. 4.2 we
discuss the above mentioned alternative description of � 2 Gt in terms of their
shift�Radon�Nikodym derivatives (cf. Theorem 7 ) and its in�nitesimal form, i.e.,
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in terms of their logarithmic derivatives via the integration by parts formulas (cf.
Theorem 8 ). In Sect. 5 we outline some possible generalizations of our method to
the QLS Models II�IV with many-particle interaction of possibly in�nite range.
In Sect. 6 we discuss fundamental problems and basic methods in the study of
Euclidean Gibbs states (e.g., Dobrushin�s existence and uniqueness criteria, cor-
relation inequalities, exponential decay of correlations for � 2 Gt, Poincare and
log-Sobolev inequalities for the corresponding Dirichlet operators H�), as well
as compare our results with those previously obtained by other authors.

The results presented in the paper have been obtained within the DFG-
Schwerpunktprogramm "Interacting Stochastic Systems of High Complexity",
Research Projects AL 214/17 "Stochastic Di¤erential Equations on In�nite Di-
mensional Manigfolds" (duration 01.05.1997�30.04.1999) and RO 1195/5 �Analy-
sis of Gibbs Measures via Integration by Parts and Quasi-Invariance" (duration
01.05.1999 �30.04.2003). One basic idea our research is the systematical appli-
cations of the methods of In�nite Dimensional Stochastic Analysis to the study
of the equilibrium properties of in�nite particle systems in Statistical Mechnics,
which entirely corresponds to the general aim of the whole Schwerpunktpro-
gramm. More presicely, the research performed by the authors can be naturally
placed to the following main topics of the Schwerpunktprogramm: 1. "Interacting
Systems of Statistical Physics" and 6. "Stochastic Analysis". Moreover, within
the Schwerpunktprogramm there have been highly stimulating discussions (e.g.,
during our various meetings) with Professors A. Bovier, J.-D. Deuschel, H.-O.
Georgii, F. Götze, and H. Spohn concerned with applications to Statistical Me-
chanics and Quantum Field Theory (cf. the corresponding contributions in this
volume).

2 A simple model of quantum anharmonic crystal

In order to �x the main ideas and make the reader more familiar with the topic,
we start with the following simplest model of a quantum crystal, which was
extensively studied in the literature.

Particular QLS Model I: harmonic pair interaction. Let Zd be the in-
teger lattice in the Euclidean space (Rd; j � j); d 2 N. We consider an in�nite
system of interacting quantum particles performing one-dimensional (i.e., polar-
ized) oscillations with displacements qk 2 R around their equilibrium positions
at points k 2 Zd: Each particle individually is described by the quantum me-
chanical Hamiltonian

Hk := �
1

2m

d2

dq2k
+
a2

2
q2k + V (qk) (1)

acting in the (physical) Hilbert state spaceHk := L
2(R; dqk):Herem (= mph=~2) >

0 is the (reduced) mass of the particles and a2 > 0 is their rigidity w.r.t. the
harmonic oscillations. Concerning the anharmonic self-interaction potential, we
suppose that V 2 C2(R); i.e., twice continuously di¤erentiable, and, moreover,
that it satis�es the following growth condition:
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Assumption (V). There exist some constants P > 2 and KV ; CV > 0 such
that for all k 2 Zd and q 2 R

K�1
V jqjP�l � CV � (sgnq)l � V (l)(q) � KV jqjP�l + CV ; l = 0; 1; 2:

Next, we add the harmonic nearest-neighbor interaction

W (qk; qk0) :=
J

2
(qk � qk0)2

with intensity J > 0; the sum being taken over all (unordered) pairs hk; k0i in
Zd such that jk � k0j = 1: The whole system is then described by a heuristic
Hamiltonian of the form

H := � 1

2m

X
k2Zd

d2

dq2k
+
a2

2

X
k2Zd

q2k +
X
k2Zd

Vk(qk) +
J

2

X
hk;k0i�Zd

(qk � qk0)2: (2)

Actually, the in�nite-volume Hamiltonian (2) cannot be de�ned directly as a
mathematical object and is represented by the local (i.e., indexed by �nite vol-
umes � b Zd) Hamiltonians

H� :=
X
k2�

Hk +
J

2

X
hk;k0i��

(qk � qk0)2 (3)

(as self-adjoint and lower bounded Schrödinger operators) acting in the Hilbert
spaces H� := 
k2�Hk.

Lattice systems of the above type (as well as their generalizations discussed
below) are commonly viewed in quantum statistical physics as mathematical
models of a crystalline substance (for more physical background see, e.g., [3],
[30], [33], [42] ). The study of such systems is especially motivated by the rea-
son, that they provide a mathematically rigorous and physically quite realis-
tic description for the important phenomenon of phase transitions (i.e., non-
uniqueness of Gibbs states). So, if the potential V has a double-well shape, in
the large mass limit m!1 the QLS (2) may undergo (ferroelectic) structural
phase transitions connected with the appearance of macroscopic displacements
of particles for low temperatures T < Tcr(m) (for the mathematical justi�cation
of this e¤ect see, e.g., [3], [5], [35]).

Remark 1. (i) Typical potentials satisfying Assumption (V) are polynomials of
even degree and with a positive leading coe¢ cient, i.e.,

V (q) := P (q) :=
X

1�l�2n
blq

l with b2n > 0 and n � 2: (4)

In this case one speaks about so-called ferromagnetic P (�)�models, which also
can naturally be looked upon as lattice discretizations of quantum P (�)��elds
(cf. [33], [47]). Let us also mention a special choice in (4), when

P (q) :=
X
0�l�n

b2lq
2l with b2l � 0 for all 2 � l � n: (5)
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Since b2 2 R can be a large negative number, such polynomials may have ar-
bitrary deep double wells. The last systems are technically more suitable for
the study of critical behaviour and the in�uence of quantum e¤ects, since then
one can use not only the FKG correlation inequalities, which are standard for
ferromagnetic pair interactions, but also more advanced (e.g., GKS, Lebowitz)
inequalities relying on the additional symmetry properties of the one-partical
potential (5) (cf. [3] as well as Sect. 6 below).
(ii) All subsequent constructions remain true if one takes for W (qk; qk0) the

general ferromagnetic interaction U(qk � qk0) given by a nonnegative convex
function U 2 C2(R! R) satisfying

0 � inf
R
U 00 � sup

R
U 00 <1; 0 � U(q) = U(�q); 8q 2 R: (6)

As was already mentioned in Sect. 1, we take the Euclidean approach based
on a path space representation for the quantum Gibbs states corresponding to
the quantum mechanical system (2). Here we only illustrate these deep relations
between quantum states and measures on loop spaces following the initial paper
[1]) (see also [3], [5], [6] for the extended and up-to-date presentation).

Let us �x some � := 1=T > 0 having the meaning of inverse (absolute) tem-
perature. Due to Assumption (Vi), for each k 2 Zd the one-particle Hamiltonian
Hk is a self-adjoint operator with trace class semigroup e��Hk ; � � 0. On the
algebra Ak := L(Hk) of all bounded linear operators in Hk, we may then de�ne
the authomorphism group ��;k; � 2 R; and the quantum Gibbs state G�;k acting
respectively by

��;k(B) := e
i�HkBe�i�Hk ; G�;k(B) := Tr(Be

��Hk)Tr(e��Hk); B 2 Ak:

For any �nite set of multiplication operators (Bi)ni=1 2 L1(Rd) we next con-
struct the so-called temperature Euclidean Green functions

�B1;:::;Bn

�;k (�1; :::; �n) := TrHk

�Qn
i=1 e

�(� i+1�� i)HkBi
� �
Tr(e��Hk) ;

0 � �1 � ::: � �n � �n+1 := �1 + �:
(7)

These functions have analytic continuations to the complex domain 0 < Re z1 <
::: < Re zn < � with the boundary values at zi = �i� i :

�B1;:::;Bn

�;k (�i�1; :::;�i�n) = G�;k
�Yn

i=1
�� i;k(Bi)

�
: (8)

Moreover, it should be noted that relation (8) uniquely determines the Gibbs
state G�;k: A further crucial observation is that the Green functions (7) may be
represented (by the Feynman�Kac formula) as the moments

�B1;:::;Bn

�;k (�1; :::; �n) = E��;k

�Yn

i=1
Bi(!k(� i))

�
(9)
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of a certain probability measure �k on the loop space

C� := f!k 2 C([0; �]! R) j !k(0) = !k(�)g : (10)

More precisely,

d�k(!k) =
1

Z
E
(x;x)
�

(
� exp

Z �

0

�
a2

2
!2k(�) + V (!k(�))

�
d�

)
dx; (11)

where Z is a normalization constant and E(x;x)� is the conditional expectation,
given that !k(0) = !k(�) = x, w.r.t. a Brownian bridge process of length �.
So, we get a one-to-one correspondence between the quantum Gibbs state G�;k,
Euclidean Green functions (7) and the path measure �k: Respectively, for all local
Hamiltonians H� in volumes � b Zd, relations similar to (7)�(9) are valid for
the associated Gibbs states G�;� on the algebra A� := L(H�) and the measure
�� on the loop space [C� ]

�. This gives a possible way to construct the limiting
states when � % Zd; and hence motivates us to consider Gibbs measures � on
the �temperature loop lattice�
 := [C� ]

Zd . We stress that so far there is no
method at all within operator theory which allows to prove convergence of local
Gibbs states in our situation. What is important, is the fact that (analogously to
the well-known Osterwalder-Schrader reconstruction theorem in Euclidean �eld
theory, see e.g. [30], [33], [47]) from each such Gibbs measure � it is possible
to reconstruct the quantum Gibbs state G� of the system (2). For the above
reasons the measures � will be called Euclidean Gibbs states (in the temperature
loop space representation) for the quantum lattice system (2). We proceed with
their rigorous de�nition in Sect. 3 below.

3 De�nition of Euclidean Gibbs measures

Here we brie�y describe the corresponding Euclidean Gibbsian formalism just
for the concrete class of quantum lattice systems (2); for a detailed exposition
and an extensive bibliography we refer the reader to [3], [6].
Let S� �= [0; �] be a circle of length � considered as a compact Riemannian

manifold with Lebesgue measure d� as a volume element and distance �(� ; � 0) :=
min(j� � � 0j; � � j� � � 0j); � ; � 0 2 S� : For each k 2 Zd; we denote by

Lr� := L
r(S� ! R; d�); r � 1;

C�� := C
�(S� ! R); � � 0;

the standard Banach spaces of all integrable resp. (Hölder) continuous functions
(i.e., loops) !k : S� ! R: In particular, C� with sup-norm j � jC� will be treated
as the single spin space, whereas H := L2� with the inner product (�; �)H := j � j2H
as the Hilbert space tangent to C� .
As the con�guration space for the in�nite volume system we de�ne the space

of all loop sequences over Zd


 := [C� ]
Zd =

n
! = (!k)k2Zd

���! : S� ! RZ
d

; !k 2 C�
o
: (12)
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We endow 
 with the product topology (i.e., the weakest topology such that all
�nite volume projections


 3 ! 7! P�! := !� := (!k)k2� 2 C�� =: 
�; � b Zd;

are continuous) and with the corresponding Borel �-algebra B(
) (which also
coincides with the �-algebra generated by all cylinder sets

f! 2 
 j !� 2 �� g ; �� 2 B(
�); � b Zd ).

Let M(
) denote the set of all probability measures on (
;B(
)): Next, we
de�ne the subset of (exponentially) tempered con�gurations


t :=

�
! 2 


���� 8� 2 (0; 1) : jj!jj�� := hXk2Zd
e��jkjj!kj2L2�

i 1
2

<1
�
: (13)

and respectively the subset of tempered measures supported by 
t 2 B(
), i.e.,

Mt := f� 2M(
) j� (
t) = 1g : (14)

In the context below, 
t will be always considered as a locally convex Polish
space with the topology induced by the system of seminorms

�
jj!jj��; j!kjC�

�
�>0; k2Zd :

Heuristically (cf. the discussion in Sect. 2 above), the Euclidean Gibbs mea-
sures � we are interested in have the following representation

d�(!) := Z�1 exp f�I(!)g
Y
k2Zd

d
�(!k); (15)

where Z is a normalization factor, 
� is a centered Gaussian measure on (C� ;
B(C�)) with correlation operator A�1� ; and A� := �m�� + a21 is the shifted
Laplace�Beltrami operator on the circle S� . Respectively I is de�ned as the map


 3 ! 7�! I(!) :=
Z
S�

24X
k2Zd

V (!k) +
X

<k;k0>�Zd
W (!k; !k0)

35 d� ; (16)

which can be viewed as a potential energy functional describing an interacting
system of loops !k 2 C� indexed by k 2 Zd: Of course it is impossible to use this
presentation for � literally, since the series in (16) do not converge in any sense.
Relying on the Dobrushin�Lanford�Ruelle (DLR) formalism (cf. [23], [32]), a
rigorous meaning can be given to the measures � as random �elds on Zd with a
prescribed family of local speci�cations f��g�bZd in the following way:
For every �nite set � b Zd; we de�ne a probability kernel �� on (
;B(
)):

for all � 2 B(
) and � 2 


��(�j�) := Z�1� (�)

Z

�

exp f�I�(!j�)g1�(!�; ��c)
Q
k2�

d
�(!k) (17)
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(where 1� denotes the indicator on �). Here Z�(�) is the normalization factor
and

I�(!j�) :=
Z
S�

24X
k2�

V (!k) +
X

<k;k0>��
W (!k; !k0) +

X
k2�; k02�c

W (!k; �k0)

35 d�
(18)

is the interaction in the volume �; subject to the boundary condition ��c :=
(�k0)k02�c in the complement �

c := Zdn�: Obviously, inf!2
 I�(!j�) > �1
and the RHS in (18) makes sense for the potentials V;W we deal here with.
Moreover,Z




exp
n
�j!kjC�

�

o
d��(d!j�) <1, 8� > 0; � 2 � 2 [0; 1=2) (19)

since the Gaussian measure 
� has such exponential moments. An important
point is the consistency property for f��g�bZd : for all � � �0 b Zd; � 2 
 and
� 2 B(
)

(��0��)(�j�) :=
Z



��0(d!j�)��(�j!) = ��0(�j�): (20)

De�nition 1. A probability measure � on (
;B(
)) is called Euclidean Gibbs
measure for the speci�cation � := f��g�bZd (corresponding to the quantum lat-
tice system (2) at inverse temperature � > 0) if it satis�es the DLR equilibrium
equations: for all � b Zd and � 2 B(
)

���(�) :=

Z



�(d!)��(�j!) = �(�): (21)

Fixing � > 0, let G denote the set of all such measures �:We shall be mainly
concerned with the subset Gt of tempered Gibbs measures supported by 
t; i.e.,

Gt := G \Mt = f� 2 G j� (
t) = 1g : (22)

Remark 2. (i) It is worthwhile to compare our results on quantum systems with
the analogous classical ones. The large-mass limit m!1 (or ~ ! 0) of model
(2) gives us an in�nite system of interacting classical particles moving in the
external �eld V: Such system is described by the potential energy functional

Hcl(q) =
a2

2

X
k2Zd

q2k +
X
k2Zd

V (qk) +
X

<k;k0>�Zd
W (qk; qk0) (23)
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on the con�guration space 
cl := RZd 3 fqkgk2Zd := q (cf. [3]). Again, the
formal Hamiltonian (23) does not make sense itself and is represented by the
local Hamiltonians

Hcl;�(qjy) :=
a2

2

X
k2�

q2k+
X
k2�

V (qk)+
X

<k;k0>��
W (qk; qk0)+

X
k2�; k02�c

W (qk; yk0)

(24)
in the volumes � b Zd given the boundary conditions y 2 
cl. The corresponding
Gibbs states � 2 Gcl at inverse temperature � > 0 are de�ned as probability
measures on 
cl satisfying the DLR equations ��� = �; � b Zd; with the
family of local speci�cations

��(�jy) := Z�1� (y)

Z
R�
exp f��Hcl;�(qjy)g1�(q�; y�c)

Q
k2�

dqk;

� 2 B(
cl); y 2 
cl: (25)

Starting from the pioneering papers [15], [21], [40], [45], such unbounded spin
systems have been under intensive investigation in classical statistical mechanics
(for recent developments see, e.g., [13], [17], [50]). However, it should be noted
that the results obtained in those papers principally do not apply in the more
complex situation of quantum systems with in�nite dimensional spin spaces as
considered here.

(ii) The necessity of restricting to con�gurations ! 2 
t will appear, once
we proceed to getting uniform moment estimates on Gibbs measures (cf. Theo-
rem 2 below). On the other hand, our de�nition of temperedness (as well as its
modi�cation to the classical systems (23) with jqkj substituting j!kjL2� ) is less
restrictive (and simpler) than those usually used in the literature (for compar-
ison, see e.g. [15], [21]). So, obviously, 
t � 
(s)t resp. Gt � G(s)t; where the
subsets of all (�slowly increasing�) tempered con�gurations resp. measures are
de�ned by


(s)t :=

8><>:! 2 

������� 9p = p(!) > 0 : jj!jj�p :=

24X
k2Zd

(1 + jkj)�2pj!kj2L2�

35 1
2

<1

9>=>; ;
G(s)t := f� 2 G j 9p = p(�) > 0 : jj!jj�p <1 for �-a.e. ! 2 
 g : (26)

In turn, G(s)t contains the subset G(ss)t of the so-called Ruelle type "superstable"
Gibbs measures named after the earlier papers [40], [46] on the classical case.
In the context of translation invariant quantum systems with many particle
interactions at most of quadratic growth, such measures were introduced in [44]
by the following support condition


(ss)t :=

8<:! 2 

������ supN2N

24(1 + 2N)�d X
jkj�N

j!kj2L2�

35 <1
9=; ;

G(ss)t :=
�
� 2 G

�� �(
(ss)t) = 1	 : (27)
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4 Formulation of the main results

Now we are ready to present our main results for the Euclidean Gibbs measures
concerning the following two directions:

�existence, uniqueness, and a priori estimates for � 2 Gt;
�alternative description of � 2 Gt in terms of their Radon�Nikodym

derivatives and integration by parts formulas.

For the sake of simplicity we con�ne ourselves to the concrete set up of the
QLS Model I. We assume that all the conditions on the interaction potentials
imposed in Sect. 2 are ful�led without mentioning this again in the formulations
of our statements. It is worth noting that, even for this mostly studied model, all
the results presented here (as well as their trivial modi�cations for classical lattice
systems like (23) performed in [13]) either are completely new or essentially
improve previous ones obtained by other authors. How far they can be extended
to more general interactions will be discussed in Sect. 4 below.

4.1 Existence, uniqueness and a priori estimates for Euclidean
Gibbs measures

The following provides us with basic information for any further investigation of
� 2 Gt:

Theorem 1. (Existence of Tempered Gibbs States, cf. [6]�[8]) (i) For all values
of the mass m > 0 and the inverse temperature � > 0 :

Gt 6= ;:

(ii) Moreover, (in all translation invariant systems treated below) there exists at
least one translation invariant � 2 G(ss)t � Gt satisfying the (even stronger than
(27)) support condition for all Q � 1 and � 2 [0; 1=2):

sup
N2N

�
(1 + 2N)�d

X
jkj�N

j!kjQC�
�

�
<1 for �-a.e. ! 2 
. (28)

Theorem 2. (A Priori Estimates on Tempered Gibbs States, cf. [6]�[8]) Every
� 2 Gt is supported by the set of Hölder loops

T
�2[0;1=2)[C

�
� ]
Zd : Actually, for all

Q � 1 and � 2 [0; 1=2)

sup
�2Gt

sup
k2Zd

Z



j!kjQC�
�
d�(!) <1: (29)

Corollary 1. The set Gt is compact w.r.t. the topology of weak convergence
of measures on any of spaces [C�� ]

Zd , � 2 [0; 1=2); equipped by the system of
seminorms j!kjC�

�
; k 2 Zd:
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In particular, by Prokhorov�s tightness criterion, the existence result for � 2
Gt immediately follows from the moment estimate (30) below, which holds for
the family ��(d!j� = 0); � b Zd, uniformly in volume. Besides, the a priori
estimates for the probability kernels ��(d!j�) of the local speci�cation � :=
f��g�bZd subject to the �xed boundary condition � 2 
t; stated in Theorems 3
and 4 below, are also of an independent interest and have various applications.

Theorem 3. (Moment Estimates Uniformly in Volume, cf. [8]) Let us �x any
boundary condition � 2 
: Then for all � > 0; � 2 [0; 1=2) and Q � 1

sup
k2Zd

j�kjC�
�
<1 =) sup

�bZd
sup
k2Zd

Z



j!kjQC�
�
��(d!j�) =: CQ;� <1; (30)

� 2 
t =) sup
�bZd

X
k2�

e��jkj
Z



j!kjQC�
�
��(d!j�) =: C 0Q;� <1: (31)

Theorem 4. (Dobrushin Type Exponential Bound, cf. [8]) For any given �; � >
0; there exist a constant A > 0 and a matrix I = (Ik;j)k;j2Zd with entries Ik;j � 0
and with the bounded operator norms

jjIjj� := sup
k2Zd

8<:X
k02Zd

Ik;j exp �jk � jj

9=; <1; 8� > 0;

jjIjj0 = jjIjjl1(Zd) := sup
k2Zd

X
j2Zd

Ik;j < �; (32)

such that for all k 2 Zd and � 2 
tZ



exp�j!kjL2� d�fkg(d!j�) � exp�

0@A+ X
j2Zd

Ik;j j�j jL2�

1A : (33)

Of course, we cannot provide here the full proofs of the theorems formulated
above. But it should be mentioned in this respect that we propose a new method
of proving existence and a priori estimates for Gibbs measures, which is based
on their alternative characterization via integration by parts (cf. Theorem 8 in
Subsect. 4.2). This method and hence the statements of Theorems 1�4 obtained
by it easily extend to general many-particle interactions (cf. Sect. 5). In contrast,
the uniqueness results quoted below essentially use the concrete structure of the
one-particle and pair potentials V (qk) and W (qk; qk0) := J

2 (qk � qk0)
2:

Theorem 5. (Uniqueness of Tempered Gibbs States, cf. [11], [12]) Suppose that
the anharmonic self-interaction possesses a decomposition

V = V0 + U;
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where V0 2 C2(R) is a strictly convex function with polynomially bounded deriva-
tives (i.e., satisfying Assumption (V0)) and U 2 Cb(R) is a bounded perturbation
(describing the presence of possible wells). Denote

b := inf
R
V 000 > 0; �(U) := sup

R
U � inf

R
U <1:

Then, for all values of the mass m > 0; the set Gt consists of exactly one point,
provided the following relation between the parameters is satis�ed:

e� �(U)

2d+ J�1(a2 + b2)
<
1

2d
: (34)

Theorem 6. (Uniqueness in P (�)-models by small mass, cf. [2]�[8]) For the
quantum lattice model (2) with the polynomial interaction of the form (5), there
exists m� > 0 such that, for all m 2 (0;m�) and all temperatures � > 0; the set
Gt consists of exactly one point.

A general presentation of the �state of the art�in the literature concerning
these problems will be given in Sect. 6.

4.2 Flow and integration by parts characterization of Euclidean
Gibbs measures

Here we brie�y discuss the main ingredients of our new approach for proving
existence and uniform a priori estimates for Euclidean Gibbs measures (cf. The-
orems 1�4). A basic idea of our method is to use an alternative characterization of
Gibbs measures via their Radon�Nikodym derivatives or via integration by parts
(instead of the usual one in terms of local speci�cations through the Dobrushin�
Lanford�Ruelle equations (21)). Such alternative descriptions of Gibbs measures
have long been known for a number of speci�c models in statistical mechanics
and �eld theory (see, e.g., [28]�[31], [36], [45]). But for the quantum lattice sys-
tems under consideration, a complete characterization of the measures � 2 Gt in
terms of their Radon�Nikodym derivatives has �rst been proved in [10], Theorem
4.6. Assuming that the interaction potentials are di¤erentiable, it was further
shown in [6]�[8] that this description of Gibbs measures is equivalent to their
characterization as di¤erentiable measures satisfying integration by parts formu-
las.

So, we start with the �ow description of � 2 Gt in terms of their Radon�
Nikodym derivatives w.r.t. shift transformations of the con�guration space 
.
Let us consider H := l2(Zd ! L2�) with the scalar product < !;! >H= jj!jj2H :=P

k2Zd j!kj2L2� as the tangent Hilbert space to 
: We �x an orthonormal basis
in H consisting of the vectors hi := f�k�j'ngj2Zd indexed by i = (k; n) 2 Zd+1;
where f'ngn2Z � C1� is the complete orthonormal system of eigenvectors of the
operator A� in H := L2� , i.e., A�'n = �n'n with �n = (2�n=�)

2m+ a2:
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Theorem 7. (Flow Description of � 2 Gt, cf. [6]�[10]). Let Ma
t denote the set

of all probability measures � 2 Mt which are quasi-invariant w.r.t. the shifts
! 7�! ! + �hi, � 2 R, i = (k; n) 2 Zd+1; with Radon�Nikodym derivatives

a�hi(!) := exp

�
��(A�'n; !k)H �

�2

2
(A�'n; 'n)H

�
(35)

� exp
Z
S�

8<:V (!k)� V (!k + �'n) + X
j: jj�kj=1

[W (!k; !j)�W (!k + �'n; !j)]

9=; d� :
Then Gt =Ma

t :

However, in applications it is more convenient to use not the �ow character-
ization itself, but its in�nitesimal form which we shall describe now. To this end
we de�ne functions (which will turn out to be the partial logarithmic derivatives
of measures � 2Ma

t along directions hi) for i = (k; n) 2 Zd+1 by

bhi(!) :=
@

@�
a�hi(!)

����
�=0

= �(A�'n; !k)H � (F
V;W
k (!); 'n)H ; ! 2 
t: (36)

Here FV;Wk : 
 ! C� is the nonlinear Nemytskii-type operator acting by

Fk(!) := V
0(!k) +

X
j: jj�kj=1

@qWfk;jg(q; q
0)
��
q=!k; q0=!k0

: (37)

For every i = (k; n) 2 Zd+1, we denote by C1dec;i(
t) the set of all functions f :

t ! R which are bounded and continuous together with their partial derivatives
@hif in the direction hi and, moreover, satisfy the extra decay condition

sup
!2
t

���f(!)�1 + j!kjL1� + jFk(!)jL1����� <1: (38)

Of course, fbi 2 L1(�) for any f 2 C1dec;i(
t) and any � 2Mt, even though we
do not know a priori whether bhi 2 L1(�): Since the interaction potentials are
assumed to be di¤erentiable, next we can show that the above �ow characteri-
zation of � 2 Gt is equivalent to their characterization as di¤erentiable measures
solving the integration by parts (for short, IbP) equations

@hi�(d!) = bhi(!)�(d!)

with the prescribed logarithmic derivatives bhi :

Theorem 8. ((IbP)-Description of � 2 Gt; cf. [6]�[8]). Let Mb
t denote the set

of al l probability measures � 2Mt which satisfy the (IbP)-formulaZ



@hif(!)d�(!) = �
Z



f(!)bhi(!)d�(!) (39)

for all test functions f 2 C1dec;i(
t) and all directions hi; i = Zd+1: Then Gt =
Mb

t :
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Remark 3. (i) Let us stress that the bhi just depend on the given potentials
V and W; and hence are the same for all � 2 Gt associated with the heuristic
Hamiltonian (2). The measures given by the probability kernels ��(d!j�) of
the local speci�cation � satisfy Theorems 7, 8, but only in directions hi; i =
(k; n) with k 2 � b Zd: Since a�hi and bhi are continuous locally bounded
functions on 
t; the latter implies that every accumulation point of the family�
��(d!j�)

��� b Zd; � 2 
t	 is surely Gibbs.
(ii) In Stochastic Analysis, solutions � to the (IbP)-formula (39) are also

called symmetrizing measures. For further connections to reversible di¤usion
processes and Dirichlet operators in in�nite dimensions we refer e.g. to [9], [10],
[13], [19].
(iii) The key point of the proofs of Theorems 1�4 stated in Subsect. 4.1 is

that (according to Theorem 6) � 2 Gt resp. ��(d!j�) are viewed as the solutions
of the in�nite system (39) of �rst order PDE�s. Due to the assumptions on the
potentials V andW imposed above, the corresponding vector �elds bhi ; i 2 Zd+1;
possess certain coercivity properties w.r.t. the tangent space H: This enables us
to employ an analog of the Lyapunov function method well-known from �nite
dimensional PDE�s to get uniform moment estimates (29�33). It should be noted
that this approach has been �rst implemented in [13], however in the much
simpler situation of the classical spin systems (23). Since the concrete technique
used in those papers does not apply to loop spaces, in [6]�[8] we develop its
proper (highly non-trivial) modi�cation for the quantum case, which involves a
"single spin space analysis" depending on the spectral properties of the elliptic
operator A.

5 Possible generalizations of QLS Model I

Here we brie�y discuss how to modify the previous setting in order to include
many-particle interaction potentials.
Particular QLS Model II: pair interaction of superquadratic growth.
Let us �rst consider the following generalization of the QLS (2) described by a
heuristic Hamiltonian of the form

H := � 1

2m

X
k2Zd

d2

dq2k
+
a2

2

X
k2Zd

q2k +
X
k2Zd

V (qk) +
X

hk;k0i�Zd
W (qk; qk0): (40)

The one-particle potential V 2 C2(R! R) satis�es the same Assumption (V0)
as in Sect. 2, i.e., has asymptotic behaviour at in�nity as a polynomial of order
P > 2. Concerning the pair potential, we suppose that W 2 C2(R2 ! R) has
respectively at most polynomial growth of any order R < P :
Assumption (W0). There exist constants R 2 [2; P ) and KW ; CW > 0 such
that for all q; q0 2 R

j@(l)q W (q; q0)j � KW

�
jqjR�l + jq0jR�l

�
+ CW ; l = 0; 1; 2:
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Remark 4. A trivial example for pair potentials which satisfy (W0) are the
polynomials W (q; q0) :=

P2r
l=0(q � q0)l of even degree 2r < P: In other words,

our assumptions mean that the pair interaction is dominated by the single-
particle one, which implies the so-called lattice stabilization. The case P = R is
also allowed, but it needs a more accurate analysis (cf. [7], [8]).

As compared with the initial QLS model (2), the only principal di¤erence in
dealing with its generalization (40) is that we should proper change the notion
of temperedness. Now we de�ne the subset of tempered con�gurations by


Rt :=

�
! 2 


���� 8� 2 (0; 1) : jj!jj��;R := hXk2Zd
e��jkjj!kj2LR�

i 1
2

<1
�
:

(41)
Note that for R = 2 this is just the previous de�nition (14). Then all our main
Theorems 1�6 presented in Sect. 4.1 remain true, as soon as in their formulation
we substitute the single spin space L2� by L

R
� and respectively specify the subset

Gt of tempered Gibbs measures as those supported by 
t := 
Rt : Let us stress
that (even in the case of translation invariant interactions we now deal with)
we cannot guarantee that (outside the uniqueness regime) any tempered Gibbs
measure will be invariant w.r.t. lattice translations. So, the above set GRt is the
largest one so that for any of its points � we are technically able to get moment
estimates like (29) uniformly w.r.t. the lattice parameter k 2 Zd.
Particular QLS Model III: pair interaction of in�nite range. A further
generalization of the QLSModels (2) and (40) concerns the case of not necessarily
translation-invariant pair interaction of possibly in�nite range. Namely, let us
consider a model described by a heuristic Hamiltonian of the form

H : = � 1

2m

X
k2Zd

d2

dq2k
+
a2

2

X
k2Zd

q2k +
X
k2Zd

Vk(qk)

+
X

fk;k0g�Zd
Wfk;k0g(qk; qk0): (42)

The one-particle potentials Vk 2 C2(R) satisfy the same Assumption (V0) as
before, but with P > 2 and KV ; CV > 0 which are uniform for all k 2 Zd: The
two-particle interactions (taken over all unordered pairs fk; k0g � Zd, k 6= k0) are
given by symmetric functions Wfk;k0g 2 C2(R2) satisfying the following growth
condition:

Assumption (W�
0): There exist some constants R 2 [2; P ) and Jk;k0 � 0 such

that for all fk; k0g � Zd and q; q0 2 R :

j@(l)q Wfk;k0g(q; q
0)j � Jk;k0

�
1 + jqjR�l + jq0jR�l

�
; l = 0; 1; 2:

For the matrix J := fJk;jg we can allow di¤erent rates of decay (for instance,
polynomial or exponential), when the distance jk� jj between the points of the
lattice gets large:
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Assumption (J0). For all p � 0 or resp. some � > 0

(i) jjJjjp := supk2Zd
nP

j2Zdnfkg Jk;j(1 + jk � jj)p
o
<1;

(ii) jjJjj� := supk2Zd
nP

j2Zdnfkg Jk;je
�jk�jj

o
<1:

Obviously, (ii) is stronger than (i). Again, we �rst need to choose the proper
notion of the temperedness, which essentially depends on the decay rate of the
pair interaction. A new issue caused by the in�nite range of the interaction is
that one also has to check that the probability kernels ��(d!j�) are well de�ned
for all boundary conditions � 2 
t. So, in view of Assumption (J0)(i), we de�ne
the subset 
R(s)t � 
Rt of (�slowly increasing�) tempered con�gurations by


R(s)t :=

�
! 2 


���� 9p = p(!) > 0 : jj!jj�p;R := hXk2Zd
(1 + jkj)�2pj!kj2LR�

i 1
2

<1
�
:

(43)
Respectively, we introduce the subset of tempered Gibbs measures

GR(s)t := f� 2 G j 9p = p(�) > d : jj!jj�p;R <1 8! 2 
 (mod�)g : (44)

Then our main theorems about existence and a priori estimates for the tempered
Euclidean Gibbs measures remain true, provided in their formulation one sub-
stitutes the single spin spaces L2� by L

R
� and, respectively, 
t by 


R
(s)t and Gt by

GR(s)t. In the formulation of Theorems 3 and 4 describing the properties of the
probability kernels ��(d!j�) one also needs obvious changes (e.g., by claiming
that jjIjjp < 1 for some p � 0 instead of jjIjj� < 1 for all � > 0 as before),
which are discussed in [5], [6]. On the other hand, if we want to deal with the
larger subset GRt � GR(s)t and completely keep the previous setup of the QLS
Model II, we should correspondingly impose the stronger Assumption (J0)(ii)
on the decay of matrix J.

General QLS Model IV: many particle interactions of unbounded or-
der and in�nite range. Here we mean the systems described by a heuristic
in�nite dimensional Hamiltonian

H = � 1

2m

X
k2Zd

d2

dq2k
+
a2

2

X
k2Zd

q2k +
X
k2Zd

Vk(qk)

+
1X
n=2

X
fk1;:::;kng�Zd

Wfk1;:::;kng(qk1 ; :::; qkn); (45)

where the n-particle interaction potentials (taken over all �nite sets fk1; :::; kng �
Zd consisting of n � 2 di¤erent points) are given by twice continuously di¤er-
entiable symmetric functions Wfk1;:::;kng 2 C2(Rdn). Again, the statements of
Theorems 1�4 (in the same formulation as that for the QLS Model III) still hold,
if one uses e.g. the following modi�cation of (W�

0) and (J0):
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Assumption (W). There existR � 2; I � 0 and symmetric matrices fJk1;:::;kng(k1;:::;kn)2Znd
with positive entries, such that for all n 2 N; fk1; :::; kng � Zd and q1; :::; qn 2 Rd

jr(l)q1Wfk1;:::;kMg(q1; :::; qn)j(1+
nX

m=1

jqmjl) � Jk1;:::;kn
nX

m=1

jqmjR+ I; l = 0; 1; 2:

Assumption (J). For all p � 0 or (even stronger) for some � > 0

(i) jjJjjp :=
P1

n=2 n
R sup
k12Zd

( P
fk2;:::;kng�Zd

Jk1;:::;kn

�
1 +

nP
m=1

jk1 � kmjp
�)

<1;

(ii) jjJjj� :=
P1

n=2 n
R sup
k12Zd

( P
fk2;:::;kng�Zd

Jk1;:::;kn exp

�
�

nP
m=1

jk1 � kmj
�)

<1:

It should be particularly emphasized that our technique based on the (IbP)-
formula (39) obviously extends even to the above non-trivial interactions, which
were not covered at all by any previous work (cf. the discussion in Sect. 6). All
details on the general QLS Model IV may be found in [6], [8]. Of course, from the
physical point of view, it is more realistic to consider systems of D-dimensional
quantum oscillators on the lattice Zd (d;D 2 N) with interaction potentials
Vk : RD! R; Wfk1;:::;kMg : (RD)M ! R: Also in this case our method works. In
this respect, we refer the interested reader to [7] where such a multidimensional
version of the particular QLS Model II was treated.

6 Comments on Theorems 1�6

In order to give the reader a wider insight into the subject, we present here a
systematic account of the fundamental problems, basic methods, known results
and possible nearest goals in the study of Euclidean Gibbs measures on loop
lattices.

I. Existence problem. As is typical for systems with noncompact (in our case,
in�nite-dimensional) spin spaces, even the initial question of whether the set Gt
is not empty (and hence the positive answer on it given by Theorem 1 for
the QLS Models I�IV) is far from trivial. A useful observation in this respect
is that, under natural assumptions on the interaction, any accumulating point
of the family ��; � b Zd; is certainly Gibbs. Depending on the speci�c class
of quantum lattice models one deals with, the required convergence ��(N) ! �;
�(N) % Zd; and thus the existence of � 2 Gt; are proved by the following main
methods listed below:

(i) General Dobrushin�s criterion for existence of Gibbs distribu-
tions [23]. The validity of the su¢ cient conditions of the Dobrushin existence
theorem for some classical unbounded spin systems (23) has been veri�ed, e.g.,
in [15], [21], [48] (however, under assumptions on the interaction potentials more
restrictive than (V0) and (W0)). Contrary to the classical case, the same prob-
lem for quantum lattice systems was not covered at all by any previous work.
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More precisely, in order to apply the Dobrushin criterion to quantum lattice sys-
tems, one should estimate in a proper way the expectations E��(d!j�)(F (!k)),
k 2 � b Zd; of some compact function F : C� ! R+ [ f1g: For this reason,
the Dobrushin type moment estimate in the spin space LR� ; which we prove in
Theorem 3 as an extension to the quantum case of the corresponding result
in [15], is yet not enough for the existence criterion. Naturally one could try to
take for F the norm-function in C�� with 0 � � < 1=2; except that so far no
technical means were available to get such moment estimates in Hölder spaces
starting from the DLR equations. A proper improvement of Theorem 4 will be
the subject of a forthcoming paper of the authors.

(ii) Ruelle�s technique of superstability estimates (cf. the original
papers [40], [46] and resp. [44] for its extension to the quantum case ). This
technique in particular requires that the interaction is translation invariant and
the many-particle potentials have at most quadratic growth (i.e., (W0) holds
with R = 2). As was shown in [44], for the subclass of boundary conditions
� 2 
(ss)t � 
(s)t (for instance, such that supk2Zd j�kjL2� < 1) the family of
probability kernels ��(d!j�); � b Zd; � % Zd; is tight (in the sense of local
weak convergence on 
) and has at least one accumulation point � from the
subset of superstable Gibbs measures G(ss)t � Gt de�ned by (27). This technique
also shows that any � 2 G(ss)t is a priori of sub-Gaussian growth.
(iii) Cluster expansions is one of the most powerful methods for the study

of Gibbs �elds, but it works only in a perturbative regime, i.e., when an e¤ec-
tive parameter of the interaction is small. In particular, various versions of this
technique imply both existence and also uniqueness (but in some weaker than
the DLR sense) of the associated in�nite volume Gibbs distributions (see, e.g.,
[41], [42] and references therein).

(iv) Method of correlations inequalities involves more detailed infor-
mation about the structure of the interaction (for instance, whether they are fer-
romagnetic or convex, cf. Remark 1). Starting from a number of correlations in-
equalities (such as FKG, GKS, Lebowitz, Brascamp-Lieb etc.) commonly known
for classical lattice systems, by a lattice approximation technique (similar to the
one used in Euclidean �eld theory) one can extend them to the quantum case
(cf., e.g., [3]).

(v) Method of re�ection positivity (as a part of (iv)) applies to trans-
lation invariant systems with nearest-neighbours pair interactions (i.e., when
Vk := V; Wfk;k0g :=W , andWfk;k0g = 0 if jk�k0j > 1). The proper modi�cation
of this technique for the QLS (2) gives the existence of so-called periodic Gibbs
states at least under Assumptions (V0); (W0) imposed in Sect. 3. Moreover, the
re�ection positivity method can also be used to study phase transitions in such
models with the double-well anharmonicity V: This has been implemented under
certain conditions (in the dimension d � 3 and for large enough �;m >> 1), e.g.,
in [3], [24], [35].

(v) Method of stochastic dynamics (also referred to in quantum physics
as �stochastic quantization�; see, e.g., [25], [13] and the related bibliography
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therein). In this method the Gibbs measures are directly treated as invariant
(more precise, reversible) distributions for the so-called Glauber or Langevin sto-
chastic dynamics. However, some additional technical assumptions are required
on the interaction (among them at most quadratic growth of the pair potentials
Wfk;k0g(q; q

0)) in order to ensure the solvability of the corresponding stochastic
evolution equations in in�nite dimensions (not to mention the extremely di¢ cult
ergodicity problem for them). This method has been �rst applied in [13] to prove
existence of Euclidean Gibbs states for the particular QLS model (2).

II. A priori estimates for measures in Gt. Theorem 2 above contributes to
the fundamental problem of getting uniform estimates on correlation functionals
of Gibbs measures in terms of parameters of the interaction. This problem was
initially posed for classical lattice systems in [15], [21] and is closely related
with the compactness of the set of tempered Gibbs states (cf. Corollary from
Theorem 2); we refer also to [13] for a detailed discussion of the classical lattice
case. There are very few results in the literature about a priori integrability
properties of tempered Gibbs measures on loop or path spaces (see, for instance,
[31], [43] for the case of Euclidean P (�)1-�elds and resp. [13] for the case of
quantum anharmonic crystals). All of them are based on the method of stochastic
dynamics just mentioned above. It is worth noting that the other methods listed
under I (i)�(v) give also some estimates on limit points for ��; � b Zd; but not
uniformly for all � 2 Gt: Besides, the �niteness of the moments of the measures
� 2 Gt is also useful for the study of Gibbs measures by means of the associated
Dirichlet operators H� in the spaces Lp(�); p � 1; (this is known as the Holley�
Stroock approach). In particular, by [9], [10] � is an extreme point (or pure
phase) in Gt; if and only if the corresponding Markov semigroup exp(�tH�);
t � 0, is ergodic in L2(�) (which extends the well known results in [36] related
to the Ising model).

III. Uniqueness problem. The validity of the su¢ cient conditions of the Do-
brushin uniqueness criterion [Do70] for the QLS�s (42) with convex pair interac-
tions of at most quadratic growth has been �rst veri�ed in [11], [12]. In doing so,
the coe¢ cients of Dobrushin�s matrix were estimated by means of log-Sobolev
inequalities proved on the single loop spaces L2� and the uniqueness of � 2 Gt
was established for small values of the inverse temperature � 2 (0; �0); but
under conditions independent of the particle mass m > 0 (and hence in the qua-
siclassical regime also). The exact statement for the particular QLS Model I is
contained in our main Theorem 5 above. For a special class of ferromagnetic
models with the polynomial self-interaction (5), these results have been essen-
tially improved in the recent series of papers [2]�[4]. The latter papers propose
a new technique which combines the classical ideas of [15], [40] based on the use
of FKG and GKS correlation inequalities with the spectral analysis of one-site
oscillators (1) speci�c for the quantum case. The strongest result of such type,
obtained in [4] and quoted here as Theorem 6, establishes the uniqueness of
� 2 Gt in the small-mass domain m 2 (0;m0) uniformly at all values of � > 0:
This provides a mathematical justi�cation for the well-known physical phenom-
enon that structural phase transition for a given mass m > 0 can be suppressed
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not only by thermal �uctuations (i.e., high temperatures ��1 > ��1cr ), but for
the light particles (with m < mcr) also by the quantum �uctuations (i.e., tun-
neling in a double-well potential) simultaneously at all temperatures � > 0. On
the other hand, for small masses m << 1, the convergence of cluster expansions
(independently of the boundary condition) has even been proved uniformly for
all values of the temperature including the ground state case � = 1, see [42].
However, in the case of unbounded spin systems such convergence of cluster ex-
pansions does not yet imply the DLR uniqueness. The uniqueness of � 2 Gt in
the QLS (42) with superquadratic growth of the many-particle interaction is a
completely open problem, which will be the subject of our forthcoming paper.
Another important and long-standing analytical problem is to �nd su¢ cient
conditions for the uniqueness of symmetrizing measures in in�nite dimensional
spaces satisfying (IbP)-formulas like (39) with the given logarithmic derivatives
bhi (for particular results on this topic see [19]).

Although our results are mainly concerned with the �rst three problems
described above, for completeness of the exposition we also mention the following
important directions:

IV. Decay of correlations. First of all, the exponential decay of spin corre-
lations for Gibbs measures is one of the standard applications of the Dobrushin
contraction technique (cf., e.g., [23], [27]). In particular, it implies that for � 2 Gt
(which in this case is a priori unique)

Cov�

�
f(!k; ')L2� ; g(!k

0 ; '0)L2�

�
� K exp(�"jk�k0j)jjf 0jjL1 jjg0jjL1 jj'jjL2� jj'

0jjL2�

with some K; " > 0 uniformly for all k; k0 2 Zd, ';'0 2 L2� and f; g 2 C1b (R) (cf.
[12]): Another general analytical approach to the decay of correlations is based
on the spectral gap estimates for the corresponding Dirichlet operator H� (see
[17], [38], [50] for its realization for the classical spin systems (23). For quantum
systems, however, the problem of getting the spectral gap estimates for H� (or
equivalently, for all H���(d!j�) uniformly w.r.t. volume and boundary conditions)
has not yet been studied in the literature (except the trivial case of strictly convex
interaction potentials) and will be the subject of our forthcoming paper. On
the other hand, for the quantum ferromagnets with polynomial self-interactions
like (5), the exponential decay as jk � k0j ! 1 of the two-point correlations
Cov��(d!j�)(!k(�); !k0(�

0)), uniformly in � ; � 0 2 S� ; � b Zd and � 2 
t; has
been used in [4] as a crucial step for proving uniqueness for � 2 Gt: Moreover,
for such quantum systems one expects the complete equivalence between the
Dobrushin-Shlosman mixing conditions, exponential decay of correlations and
Poincaré and log-Sobolev inequalities for the corresponding Dirichlet operators
H� (this equivalence has been �rst shown in [49] for lattice systems with compact
spins and respectively extended in [50] to classical ferromagnetic systems with
unbounded spins). Poincaré and log-Sobolev inequalities are commonly accepted
in the literature as important tools to describe the links between the relaxation
of stochastic dynamics and its equilibrium (e.g., Gibbs) measures (cf., e.g., [50],
[13]).
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V. Phase transitions. There are basically two general methods for proving
existence of phase transitions (i.e., non-uniqueness of � 2 Gt) for low tempera-
tures ��1, namely, the re�ection positivity (for d � 3) and the energy-entropy
(Peierls-type) argument (for d � 2). However, in practice their successful ap-
plications to quantum lattice systems have been limited so far to ferromagnetic
P (�)-models (cf., e.g., [14], [24], [33], [35]). The �rst method (already men-
tioned in Item I.(v)) enables one to prove the positivity of a long-range order
parameter limj�j!1E�per;�

�P
k2� !k(�)

�2
=j�j2 for large enough m > m0 and

� > �0(m0) via the so-called infrared (Gaussian) bounds on two-point corre-
lation functions E�per;�!k(�)!k0(�) w.r.t. the local Gibbs measures �per;� with
periodic boundary conditions (cf. [24]). The second method has originally been
discovered (as the so-called Peierls argument) for the Ising model and further
developed to apply to rather general classical spin systems (now known as the
Pirogov-Sinai contour method, cf. [48]). Its quantum modi�cation was �rstly
implemented to the study of phase transition in the ('4)2�model of Euclid-
ean �eld theory (cf. [33]) and then in [14] to its lattice approximation (2) with
V (qk) = �(q2k � �

�1)2 + �q2k=2; where � > 0 is the strength of the interac-
tion. Following the idea of [33], [14], one de�nes a �collective spin variable�
�k :=sign

R
S�
!k(�)d� taking values �1 and a long-range parameter as the cor-

relation function < �k�k0 >:= limj�j!1E�per�
�k�k0 : Then, for any �xed �; the

existence of long-range behaviour, and hence phase transition, follows from the
estimate < �k�k0 >� 1=2 valid for large enough values of m and �.

VI. Euclidean ground states. Of special interest for quantum systems is
the case of zero absolute temperature, i.e., � = 1, which is technically more
complicated and less studied in the literature. In particular, it involves an im-
portant problem of the operator realization of the formal Hamiltonian (2) in
quantum mechanics (cf. [1], [16]). The corresponding Gibbs measures � 2 Ggr
on the �path lattice� [C(R)]Zd ; so-called Euclidean ground states, also allow the
DLR-description, but through a family of local speci�cations �I�� indexed by
�time-space�windows I � � with I b R; � b Zd; cf. [41]. A principal di¤er-
ence with the previous case 0 < � < 1 is that now there is not available any
such (independent from boundary conditions �) reference measure so that all
�I��(d!j�) are de�ned as its Gibbs modi�cations. So far, there are very few
rigorous results about Gibbs measures on the path space [C(R)]Zd , which all
are mainly related to the existence problem. A recent progress in this direction
was achieved in the series of papers [41], [42], [39], where the limit measures
lim�%Zd limI%R �I�� 2 Ggr for the P (�)�lattice models (2) have been con-
structed through cluster expansions w.r.t. the small mass parameter m << 1.
At the same time, for �xed � b Zd; the corresponding unique Gibbs mea-
sures �gr;� := limI%R �I�� on the path space [C(R)]� are well-known as the
P (�)1�processes and can be looked upon as a special case of Euclidean �eld
theory in space-dimension zero (cf. [43], [18]). Besides, the Gibbs measures on
the path space [C(R)]Zd also appear in a natural way as weak solutions for SDE�s
in Zd ([22], [41]). Within the Schwerpunktprogramm, related Gibbs measures on



22

path spaces have detailed been studied by J. Loerinczi and H. Spohn (see their
survey in this volume).
In this respect it should be mentioned that in the recent preprint [34] some

(deterministic) version of integration by parts for local speci�cations has been
used to prove existence of Gibbs measures relative to Brownian motion on the
path space C(R). Finally, let us note that our method based on the (IbP)-formula
(39) can also be modi�ed to apply to the case of zero absolute temperature, i.e.,
� = 1, and corresponding symmetrizing measures on [C(R)]Zd . This case is
under present investigation.

VI. Random lattice systems. At this stage the case of spin systems with
random interactions as those studied within the Schwerpunktprogramm by A.
Bovier and Ch. Külske (see their contribution to this volume) has not yet been
considered. We think, however, that our method can also be applied to some of
such situations, at least in a modi�ed way.
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