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Abstract

A concept of energy levels of quantum systems periodically depending on time
and having a discrete or a continuous spectrum is proposed. A natural concept
of adjacent and effective energy levels as well as a notion of distance between the
levels are introduced. The results of the theory presented are applied to justify
the quantum chaos conjecture for a class of systems including, as a special case,
the “kicked rotator” model.

1 The concepts of energy levels of quantum systems

and distances between them

We consider a quantum system given by an Hamiltonian operator Ĥ = Ĥ(t) depending
periodically on time t, i.e., Ĥ(t) = Ĥ(t + T ), where T > 0 is the operator’s period.
The corresponding Schrödinger equation is given by

ih̄
∂Ψ

∂t
= ĤΨ , (1)

where Ψ = Ψ(q, t) is the wave function, namely a function of q for fixed t belonging to
Hilbert space L2. Let Ψ(q, t) be the solution of equation (1) for t ≥ t0 satisfying the
initial condition ψ(q) = Ψ(q, t0) ∈ L2. We define the (Floquet) monodromy operator
U = Ut0 : Ψ(q, t0) → Ψ(q, t0 + T ). It is well-known that U is a unitary operator and
for distinct values of t0 the corresponding operators Ut0 are unitarily equivalent to each
other [1]. Hence, its spectrum is a set of complex numbers of absolute value 1. First,
we assume that the spectrum of the operator U is discrete and is represented by the
sequence of eigenvalues λn such that λn = eiαn where n ∈ Z is an integer and αn is
a real number. Let ψλn(q) be the eigenfunction corresponding to the eigenvalue λn
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such that Uψλn(q) = λnψλn(q). Then solution Ψαn(q, n) of equation (1) with the initial
condition Ψαn(q, t0) = ψλn(q) satisfies

Ψαn(q, t0 + T ) = e−iαnΨαn(q, t0) .

Such a solution Ψαn(q, t) is called quasistationary, and the corresponding value
En = h̄αn

T
introduced in [13] is called quasienergy. In this article we will call the value

αn the energy level.
We assume now that the spectrum of operator U is continuous (i.e., there are no

eigenvalues) and that U has the following structure: The Hilbert space L2 has a basis
ψn(q)(n ∈ Z) satisfying, for each n ∈ Z,

Uψn(q) = e−iµn(q)ψn(q) . (2)

In (2) µn(q) is a real function such that for any pair (n′, n′′) of integers , the function

∆n′,n′′(q)
def
= µn′(q)−µn′′(q) takes only finitely or countably many different values. The

functions ∆n′,n′′(q) play the role of distances between the energy levels µn(q) which
exhibited in quantum mechanics over passing from one energy level to another. Thus,
despite the fact that the set of the energy levels µn(q) is not discrete, the set of all
possible values of the distances between them is discrete; this set treats the physical
meaning of µn(q).

We consider a special important case for which operator U = U2 ·U1 is the compo-
sition of two unitary operators U1 and U2 such that operator U1 is represented by an
infinite diagonal matrix with the diagonal entries λn = e−iαn , and U2 is the operator of
multiplication by the function λ(q) = e−µ(q), i.e., for any n ∈ Z the following equalities
hold:

Uψn(q) = λ(n)(q)Ψn(q) , λ(n)(q) = e−i(µ(q)+αn) . (3)

The functions µn(q) = µ(q)+αn are the energy levels, and the distances ∆n′,n′′(q) do not
depend on the basis ψn(q). By (3), this statement is equivalent to the statement that
the spectrum of operator U∗ = 1

λ(0)(q)
U is discrete and is invariant. Consequently, the

eigenvalue λ(n)(q)
λ(0)(q)

of operator U∗ and the distances ∆n′,n′′(q) = i
(
ln λ(n′)(q)

λ(0)(q)
− ln λ(n′′)

(q)
λ(0)(q)

)
do not depend on the basis ψn(q).

2 Adjacent, effective, and noneffective energy lev-

els of quantum systems

Let n′ and n′′ be two distinct integers. The energy levels µn′(q) and µn′′(q) are called
adjacent if for all q does not exist on integer n, n �= n′, n′′, such that µn(q) belongs to
the closed interval [µn′(q), µn′′(q)].

min(µn′(q), µn′′(q)) ≤ µn(q) ≤ max(µn′(q), µn′′(q)) . (4)

The Hilbert space L2 is the space of 2π-periodic square integrable functions and assume
that the energy levels are defined with respect to its orthogonal basis ψn(q) = einq(n ∈
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Z). We represent the energy level µn(q) as follows:

µn(q) = 2πmn(q) + 2πβn(q) , (5)

where mn(q) is an integer and function βn(q) satisfies 0 ≤ βn(q) < 1. It follows from

(5) that mn(q) =
[

µn(q)
2π

]
is the integer part of the number µn(q)

2π
and βn(q) =

{
µn(q)

2π

}
=

µn(q)
2π

−
[

µn(q)
2π

]
is its fractional part. From equalities (2) and (5) it follows that the first

term 2πmn(q) in (5) does not affect to the wave functions ψn(q). Therefore, we call
the function 2πmn(q) the noneffective energy level. On the contrast, we call the second
term, 2πβn(q), the effective energy level. For two energy levels, µn′(q) and µn′′(q) with
µn′(q) ≤ µn′′(q), we define the distance ρ(µn′(q), µn′′(q)) between them by

ρ(µn′(q), µn′′(q)) = βn′′(q) − βn′(q) . (6)

3 Justification of quantum chaos conjecture for some

class of quantum systems

Quantum chaos theory studies the distribution of the distances between the adjacent
energy levels of a quantum system. Ther are two main conjectures based on numerical
simulations concerning distribution laws of these distances ([2],[6],[7],[9]). The first
conjecture concerns quantum systems that are quantum analogues of classical inte-
grable systems. The conjecture states that the distribution law of distances for such
a system is close to the Poisson distribution with the density exp(−σ) and coincides
with it asymptotically as σ → 0. The second conjecture states that for the quantum
analogue of a classical strong nonintegrable system, the distribution law of distances
is close to the distribution with the density const σ as σ → 0. In the present article,
the quantum chaos conjecture is justified for a special class of quantum system. This
class includes, as a special case, a “kicked rotator” model ([1], [3], [4], [5], [8], [9]).

To describe the quantum model, first we introduce the corresponding classical
model. We consider a one-dimensional nonlinear oscillator associated to the Hamil-
tonian function H = H(q, I, t) = H0(I) + H1(q, t), where I,q are the ’action-angle’
variables, t is an independent variable, and function H1(q, t) has period 2π in q, period
T > 0 in t, and is represented in the form

H1(q, t) = F (q)
∞∑

k=−∞
δ(t− kT ) . (7)

Here F (q) is a smooth 2π-periodic function, δ = δ(t) is the Dirac measure, and the
summation is taken over all integers k. The first rigorous results on behavior of the
system’s solutions with the Hamiltonian function H = H0(I)+H1(q, t), where function
H0(I) is that of a general form, have been established in [8]. We assume here that
H0(I) =

∑∞
s=0 bsI

s is an entire function (in particular, a polynomial) with coefficients
bs = as

h̄
, s = 0, 1, . . ., where h̄ is Planck’s constant and as are real numbers. In a special

case, when as = 0 for s �= 2, F (q) = c cos q, c is a constant, this system is nothing else
than a “kicked rotator”.
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Getting onto the quantum model, we introduce the Hilbert space L2 of complex 2π-
periodic in q square integrable functions as the space of states of the quantum system
and also introduce impulse operator Î = h̄

i
∂
∂q

. The wave function Ψ = Ψ(q, t) ∈ L2

satisfied the Schrödinger equation (1), where Ĥ = Ĥ(t) = Ĥ0 + Ĥ1(t), Ĥ0 =
∑∞

s=0 bsÎ
s

and operator Ĥ1(t) is the limit, as ε→ 0 (ε > 0), of the operators of multiplication by

function H
(ε)
1 obtained from function H1 in (7) after replacing the delta-function by a

smooth function δε with support on the interval [0, ε] with
∫ ε
0 δε = 1.

Let Ψ+(q, nT ) denote the solution of equation (1) immediately after the instant
t = nT (n ∈ Z). We define the monodromy operator U : Ψ+(q, nT ) → Ψ+(q, (n+1)T )
to be the limit as ε → 0, of the monodromy operators U (ε) corresponding to equation
(1) with operator Ĥ(t) on the right hand side replaced by operator Ĥ0 + Ĥ

(ε)
1 , where

Ĥ
(ε)
1 is the operator of multiplication by the function H

(ε)
1 . It has been proven in [1], [5]

and [12] that this limit exists and has the following form: U = exp
(
−iF

h̄

)
exp

(
−iTĤ0

h̄

)
.

Moreover, if ψ(q) = exp(inq), then Uψn(q) = λn(q)ψn, where

λn(q) = exp(−iµn(q)), µn(q) =

(
F (q) + T

∞∑
s=0

asn
s

)
/h̄ . (8)

The equalities (8) show that the functions µn(q) are the energy levels in the sense
of the definition given in Section 1. In particular, if F (q) = const, then the spectrum
of U is discrete, ψn(q) are the corresponding eigenfunctions, and the λn(q)’s are the
corresponding eigenvalues.

Assume that the real function G(x) = T
2πh̄

∑∞
s=0 asx

s of satisfies the following con-
dition:

(i) all zeros of G(x) (if they exist) lie in a bounded region of the real line;

(ii) limn→∞ |G(n+ 1) −G(n)| = ∞;

(iii) for any real numbers σ1 and σ2 satisfying 0 < σν ≤ 1, ν = 1, 2, the number
DN(σ1, σ2) of two-dimensional vectors �κn = ({G(n)}{G(n+ 1)}) in the sequence
�κ1, . . . , �κN that belong to rectangle Π = {y = (y1, y2) : 0 ≤ y1 < σ1, 0 ≤ y2 < σ2}
satiesfies limN→∞

DN (σ1,σ2)
N

= σ1σ2.

Condition (iii) means that the joint distribution of two adjacent fractional parts
of function G(x) is uniform. All the three conditions hold for polynomials G(x) =∑�

s=0 asx
s of degree � ≥ 2, for which at least one of the coefficients a2, a3, . . . , a� is an

irrational number ([10]). By (8), if the conditions (i) and (ii) hold, then there is a
number n0 ≥ 0 for which the energy levels µn(q) and µn+1(q) are adjacent whenever
n > n0. The adjacent energy levels correspond to the adjacent quantum states ψn(q)
and ψn+1(q) with the adjacent frequences n

2π
and n+1

2π
. It follows from (iii) that for

0 < σ ≤ 1 and for the number D∗
N(σ, q) of values n, n ∈ {1, . . . , N}, for which

0 ≤
{

µn+1(q)
2π

}
−
{

µn(q)
2π

}
< σ, the following holds:

P ∗(σ)
def
= lim

N→∞
D∗

N(σ, q)

N
= |Π∗| = σ − σ2

2
. (9)
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Here, Π∗ stands for the set

Π∗ = {y = (y1, y2) : 0 ≤ y1 < 1, 0 ≤ y2 < 1, 0 ≤ y2 − y1 < σ}
and |Π∗| stands for the area of Π∗. In view of (6) and (9), the distribution function
P ∗(σ) of the distances between the adjacent energy levels differs from the Poisson’s law
distribution function 1 − exp(−σ) with density exp(−σ) by terms of third order in σ,
as σ → 0. Thus, the quantum chaos conjectures holds for the class of quantum systems
in question. In the special case, when H0(I) is a general polynomial, this result has
been obtained in [11] and [12] from pure mathematical point of view.
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