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1. Introduction

Problems arising in Lp-potential theory are typically of nonlinear
nature. In this article we present some results jointly obtained with
N. Jacob [10] concerning a new approach to this problem. It is based
on the theory of monotone operators due to Browder and Minty. We
will show that this general technique gives a optimally suited frame for
the nonlinear situation in Lp-potential theory.

Among different approaches to the construction of a stochastic pro-
cess starting from a given operator the L2-approach has turned out
to be one of the most successful. In particular the theory of Dirich-
let forms leads to comprehensive results in very general situations (see
[6], [16]). However, a certain weakness of this apprach lies in the fact
that one has to take into account exceptional sets and a process con-
structed by this method is determined only for starting points outside
an exceptional set. The exceptional sets themselves are given by the
sets of capacity zero, so the potential theory of the operator under
consideration comes into play.

A possible remedy to this difficulty is to refine the potential theory
and to replace the L2-setting by an Lp-theory having in mind that an
Lp-approach should give better regularity results. This led to the notion
of (r, p)-capacities, see V.G Maz’ya, V.P. Havin [18] and D.R. Adams,
L.I. Hedberg [1] as a standard reference. In the context of Dirichlet
forms the concept of (r, p)-capacities was first introduced by P. Malli-
avin [17] and subsequently studied by M. Fukushima and H. Kaneko
[4, 5, 14] and T. Kazumi, I. Shigekawa [15].

It turns out that by choosing the parameter p (or r) sufficiently large
in many cases the exceptional sets disappear, i.e. every nonempty set
has strictly positive (r, p)-capacity. Consequently, in this case it is
possible to construct by Dirichlet form an associated process starting
at every point.

2. (r, p)-capacities

The classical capacity corresponding to the Laplace operator is the
Newtonian capacity or as a slightly modified version the 1-capacity,
which for an open set G ⊂ R

n is defined by the minimization problem

cap(G) := inf{

∫

Rn

|∇u|2 dx+

∫

Rn

|u|2 dx, u ∈ H1,2(Rn), u ≥ 1 on G a.e.}.
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It is well-known that this problem has a unique minimizer uG which is
called the equilbrium potential of G.

In order to define analogous capacities in an Lp-setting one replaces
for 1 ≤ p < ∞ and r ≥ 0 the Sobolev space H1,2(Rn) by the Bessel
potential spaces

Hr,p(Rn) = (Id−∆)−r/2(Lp(Rn))

= {f ∈ Lp(Rn) : f = Gr ∗ g, g ∈ L
p(Rn)}

and the corresponding norm

‖f‖r,p = ‖g‖Lp.

Here Gr is the Bessel potential kernel given by its Fourier transform

Ĝr(ξ) = (1 + |ξ|2)−r/2. The (r, p)-capacity then is defined as above by

capr,p(G) := inf{‖u‖p
r,p u ∈ Hr,p(Rn), u ≥ 1 on G a.e.},

which of course reduces to the initial case for p = 2 and r = 1.

The idea can be carried over also to the investigation of Lévy pro-
cesses with characteristic exponent Ψ, i.e. Ψ is a continuous negative
definite function or to Lévy-type processes generated by pseudo differ-
ential operators

−p(x,D)u(x) =

∫

Rn

eixξp(x, ξ)û(ξ) dξ,

where the symbol p(x, ξ) is assumed to satisfy certain estimates in
terms of the fixed continuous negative definite reference function Ψ
(see W. Hoh and N. Jacob [11, 7, 12, 8, 9]). In this case the correct
function spaces are modified so-called Ψ-Bessel potential spaces

HΨ,r
p (Rn) = {u ∈ Lp(Rn) : ‖u‖HΨ,r

p
,∞}

with norm ‖u‖HΨ,r
p

= ‖F−1((1 + Ψ)r/2 · Fu)‖Lp (F denotes the Fourier

transform). These spaces where studied in great detail by W. Farkas,
N. Jacob, and R.L. Schilling [2, 3].

Our starting point will be as in the considerations of (r, p)-capacities
for Dirichlet forms an Lp-semigroup. Let X be separable metric space
equipped with a Radon measure µ and let for some 1 < p <∞

T
(p)
t : Lp(X) → Lp(X), t ≥ 0,

be a strongly continuous, positivity preserving contraction semigroup
on Lp(X) with Lp-generator A(p). In particular we do not assume

that T
(p)
t is sub-Markovian. Even more important, since we are inter-

ested also in non-symmetric situations, we do neither assume that any

symmetry is involved nor that the adjoint semigroup T
(p)∗
t on Lp′(X),

1
p

+ 1
p′

= 1, is sub-Markovian.
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In order to define the appropriate function spaces we need the frac-
tional power (Id − A(p))−r/2 which can be defined directly in terms of
the semigroup by the Gamma-transform

V (p)
r u =

1

Γ( r
2
)

∫ ∞

0

t
r
2
−1e−tT

(p)
t u dt.

Then V
(p)
r : Lp(X) → Lp(X) is injective, we denote its inverse by Tr,p.

Define the function space

Fr,p = V (p)
r (Lp(X))

and the norm
‖u‖Fr,p

= ‖Tr,pu‖Lp.

For an explicit investigation of the corresponding integral kernels in
concrete situations we refer to N. Jacob and R.L. Schilling [13]

3. Monotone operators

Let Y be a reflexive separable Banach space with dual space Y ∗.

Definition. Let K ⊂ Y a be closed convex set and let T : K → Y ∗

be a (nonlinear) operator.

A. We call T monotone if 〈Tu− Tv, u− v〉 ≥ 0 for all u, v ∈ K.

B. The operator is called strictly monotone if 〈Tu− Tv, u− v〉 > 0 for
all u, v ∈ K and u 6= v.

C. T is called uniformly monotone if there is a strictly increasing con-
tinuous function γ : R+ → R, γ(0) = 0 and lim

t→∞
γ(t) = ∞, such that

for all u, v ∈ K

〈Tu− Tv, u− v〉 ≥ γ(‖u− v‖Y ) · ‖u− v‖Y

holds.

D. T is coercive with respect to K if there is an element ϕ ∈ K such

that lim‖u‖Y →∞
u∈K

〈Tu−Tϕ,u−ϕ〉
‖u−ϕ‖Y

= ∞.

Moreover we need

Definition. Let T : Y → Y ∗ be an operator.

A. T is called hemicontinuous if for all u, v ∈ Y and h ∈ Y the function

s 7→ 〈T (u+ sv), h〉

is continuous on [0, 1].

B. T is called demicontinuous if

un → u in Y ⇒ Tun ⇀ Tu in Y ∗.

Now the main theorem on monotone operators states (see E. Zeidler
[19]):
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Theorem (Browder–Minty). Let T : Y → Y ∗ be a monotone, coercive,
and hemicontinuous operator.

A. For every f ∈ Y ∗ the set of solutions of

Tv = f

is non-empty, closed and convex.

B. If in addition T is strictly monotone, then the solution is unique
and the inverse operator T−1 : Y ∗ → Y is strictly monotone, demicon-
tinuous and bounded.

C. If T is even uniformly monotone, then T−1 is continuous.

4. Application to (r, p)-capacities

In order to define (r, p)-capacities in our general setting we have to
consider a minimization problem for the functional

Er,p(u) :=
1

p
‖u‖p

Fr,p
=

1

p

∫

X

|Tr,pu|
pµ(dx).

First note that the functional Er,p : Fr,p → R is strictly convex and

coercive, i.e. Er,p(u)
‖u‖Fr,p

→ ∞ as ‖u‖Fr,p
→ ∞. Moreover, Er,p is Gâteaux

differentiable and we can explicitly calculate the Gâteaux derivative

A(p)
r : Fr,p → F∗

r,p

at u ∈ Fr,p:

A(p)
r u := T ∗r,p(|Tr,pu|

p−2 · Tr,pu).

Note that A
(p)
r is a nonlinear operator unless p = 2. We can prove the

following inequality:

〈A(p)
r u−A(p)

r v, u− v〉 ≥ 22−p‖u− v‖p
Fr,p

In particular this implies that on every closed convex subset of Fr,p the

operator A
(p)
r is uniformly monotone and coercive.

Since Er,p is strictly convex, coercive and by definition continuous it
is clear by the general theory of coercive functionals (see E. Zeidler [19]
Theo. 25 D) that for every open subset G ⊂ X Er,p attains a unique
minimum on the closed convex subset {u ∈ Fr,p : u ≥ 1 on G a.e.}.
Therefore, the unique minimizer eG again defines an (r, p)-equilibrium
potential and the (r, p)-capacity is given by

capr,p(G) = Er,p(eG).

Analogously, for h ∈ Fr,p one can consider the closed convex set {u ∈
Fr,p : u ≥ h on G a.e.} and obtains as the unique minimizer the bal-
ayaged function hG.
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In accordance with Dirichlet forms we introduce the notion of a mu-
tual energy on Fr,p × Fr,p:

E (p)
r (u, v) := 〈A(p)

r u, v〉,

which is again nonlinear with respect to the first argument. We now
can find a better description of the minimizer in terms of a variational

inequality which, as one would expect, involves the derivative A
(p)
r of

the functional Er,p:

Proposition. Let K ⊂ Fr,p be closed and convex. The unique mini-
mizer of Er,p on K satisfies

E (p)
r (u, ϕ− u) = 〈A(p)

r u, ϕ− u〉 ≥ 0 for all ϕ ∈ K.

This in particular implies that for an equilibrium potential eG the
variational inequality

E (p)
r (uG, ψ) ≥ 0 for all ψ ∈ Fr,p, ψ|G ≥ 0

holds. In analogy to Dirichlet forms we call a function u ∈ Fr,p a
potential if

E (p)
r (u, ψ) = 〈A(p)

r u, ψ〉 ≥ 0 for all ψ ∈ Fr,p, ψ ≥ 0.

Especially, equilibrium potentials are potentials in this sense.
In other words a potential is a function u ∈ Fr,p having the property

that A
(p)
r u is a positive element in F ∗

r,p (in a distributional sense). But,

since A
(p)
r is an uniformly monotone operator that satisfies all assump-

tions of the Browder-Minty theorem, we know that it is invertible. We
denote its inverse by

U (p)
r = (A(p)

r )−1 : F∗
r,p → Fr,p

and thus have shown:
u ∈ Fr,p is a potential if and only if u = U

(p)
r f for some positive

f ∈ F∗
r,p.

Again an explicit calculation is possible:

U (p)
r f = V (p)

r (|V (p)∗
r f |p

′−2 · V (p)∗
r f).

This operator U
(p)
r is a well-known object called the nonlinear potential

operator and has been investigated before for instance by V.G. Maz’ya,
V.P. Havin [18] and D.R Adams, L.I. Hedberg [1]. Note that under
reasonable assumptions the positive elements in F ∗

r,p can be identified
with measures on X (of finite energy), see T. Kazumi, I. Shigekawa
[15]. In this sense we obtain a representation of the potentials which is
completely analogous to the Riesz representation in classical potential
theory.
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