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Abstract

For Wiener spaces conditional expectations and L2-martingales

w.r.t. the natural filtration have a natural representation in terms

of chaos expansion. In this note an extension to larger classes of pro-

cesses is discussed. In particular, it is pointed out that orthogonality

of the chaos expansion is not required.

Recently, the martingale property and conditional expectations w.r.t. the
natural filtration of Brownian motion for (generalized) processes have been
studied by [Hid80], [BP96], [DPV97], and [GKS99] in the context of white
noise analysis. For regular processes these characterizations are an immedi-
ate consequence of the chaos expansion w.r.t. multiple stochastic integrals.
They have turned out to be useful for the study of local times, see [dFDS00]
and the study of a generalized Clark-Ocone formula [AØPU00], [dFOS00],
and [NS01]. This has motivated us to consider these features for a more gen-
eral class of processes and more general systems of functions than multiple
stochastic integrals.

We shall work throughout with the space D′(R) of generalized functions
as our sample space; recall the Gelfand triple D(R) ⊂ L2(R, dt) ⊂ D′(R).
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One equips D′(R) with the weak σ-algebra F(D′(R)), i.e. the σ-algebra
generated by the mappings ω 7→ 〈ω, ϕ〉 for ϕ ∈ D(R). A probability measure
P on (D′(R),F(D′(R))) gives rise to a generalized coordinate process Φ by

Φ : D(R)×D′(R) → R (1)

(ϕ, ω) 7→ 〈ω, ϕ〉 .

Example 1 Let (D′(R),F(D′(R)), P ) be a generalized random process, with
independent values at every point, more explicitly we assume that the char-
acteristic function

CP (ϕ) :=

∫

D′(R)

ei〈ω,ϕ〉P (dω)

fulfills the Lévy-Khinchin representation, i.e.

ln (CP (ϕ)) = i

∫

R

ϕ(s)ν1(ds)−
1

2

∫

R

ϕ2(s)ν2(ds)

+

∫

R

∫

|λ|>0

[

eiλϕ(s) − 1− iλϕ(s)
]

ν3(dλ, ds),

where ν1 is a signed, ν2 is a non-negative Radon-measures on R, and ν3, the
Lévy-measure, is a non-negative Radon-measure on (R \ {0})× R such that
for some ε > 0

ν(ds) := ν2(ds) +

∫

0<|λ|<1

λ2ν3(dλ, ds) +

∫

1≤|λ|

eε|λ|ν3(dλ, ds) (2)

is a Radon-measure. In particular, for functions ϕ1, ϕ2 ∈ D(R) with ϕ1 ·ϕ2 =
0 one has that CP (ϕ1 · ϕ2) = CP (ϕ1)CP (ϕ2). Without loss of generality we
consider ν1 = 0.

Example 2 Let (Ω,F(Ω), Q) be an arbitrary probability space and (Mt)t∈R+

a càdlàg L2-martingale on this space. For Q-a.e. ω ∈ Ω one can define a
generalized function

D(R) → R

ϕ 7→ −

∫ ∞

0

.
ϕ (s)Ms(ω) ds = ϕ(0)M0(ω) +

∫ ∞

0

ϕ(s) dMs(ω),

where dMs denotes the Itô integral. The image measure of Q on (D′(R),F(D′(R)))
given by this mapping we denote by P . Without loss of generality we assume
M0 = 0.
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Condition (R) Assume that there exists a locally convex vector space E

such that D(R) is a dense subspace of E and

ϕ 7→

∫

D′(R)

|〈ω, ϕ〉|2 P (dω)

is continuous in E. More specially, we assume that there exists a Radon
measure σ such that ∩p≥1L

p(R, σ) is a subspace of E.

E does not necessarily fit into the chain D(R) ⊂ L2(R, dx) ⊂ D′(R).
Because of Condition (R) one can extend (1) in L2 (D′(R), P )-sense, i.e. for
every sequence (ϕn)n∈N in D(R) which converges to ϕ ∈ E the sequence
(〈·, ϕn〉)n∈N converges in L2 (D′(R), P ) to the same function, which we denote
by 〈·, ϕ〉. Denote by EC the complexification of E and define for ϕ1+iϕ2 ∈ EC

the functional 〈·, ϕ1 + iϕ2〉 := 〈·, ϕ1〉 + i 〈·, ϕ2〉 . For M ⊂ E define the σ-
algebra FM ⊂ F(D′(R)) as the σ-algebra generated by the functions ω 7→
〈ω, ϕ〉 for ϕ ∈ M . Note that for the E-closure M of M it is FM = FM.
Denote for any interval I ⊂ R by FI the σ-algebra generated by the subspace
of all bounded measurable functions which are 0 outside of I.

Example 1 In this case the second moment is just

∫

D′(R)

|〈ω, ϕ〉|2 P (dω)

=

∫

R

ϕ2(s)ν2(ds) +

∫

R

ϕ2(s)

∫

|λ|>0

λ2 ν3(dλ, ds)

≤ c

∫

ϕ2(s)ν(ds)

for a constant c > 0. In this case we define E as the projective limit space
∩p≥1L

p(R, ν). The process t 7→
〈

·, 11[0,t]

〉

has a càdlàg version which is a
semi-martingale and a strong Markov process, see e.g. [Pro90].

Example 2 In this case one may choose a measure σ closely related to the
Föllmer-Doleans measure, the quadratic variation [·, ·], and the compensator
〈·, ·〉 respectively, see e.g. [WW90] and [Pro90],

∫

D′(R)

|〈ω, ϕ〉|2 P (dω) = EP

[
∫ ∞

0

ϕ2(s) d [M ]s

]
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= EP

[
∫ ∞

0

ϕ2(s) d 〈M〉s

]

=:

∫

R

ϕ2(s)σ(ds).

For E we consider L2(R, σ). Note that for 0 ≤ T ,
〈

·, 11(−∞,T ]

〉

and MT have
the same distribution and for all ϕ ∈ E it holds P -a.s. that

〈·, ϕ〉 =
〈

·, ϕ11[0,∞)

〉

.

Different σ-algebras generated by the martingale itself can be expressed in the
following way: let T2 < T2

FD((T1,T2)) = σ (Mt −Ms| t, s ∈ (T1, T2)) = σ (Mt −Ms| t, s ∈ [T1, T2)) .

Furthermore, FD((−∞,T2)) = σ (Mt| t < T2)) .

Denote by E⊗̂nC the n-th symmetric algebraic tensor product of E and

by Expalg (EC) the space of all sequences ϕ := (ϕn)n∈N0
with ϕn ∈ E⊗̂nC for

which only finite many ϕn are unequal to 0.

Condition (C) There exist linear mappings Pn : E⊗̂nC → L2(D′(R), P ) such
that the set

{

Pn(ϕn)
∣

∣

∣
n ∈ N, ϕn ∈ E⊗̂nC

}

is a total subset of L2(D′(R), P ).

One can define a linear mapping

I : Expalg (EC) → L2(D′(R), P )

(ϕn)
∞
n=1 7→

∞
∑

n=0

Pn(ϕn).

using the fact that the sum is actually finite. The image I
(

Expalg (EC)
)

we
denote by P(D′(R)) and hence we obtain a triple P(D′(R)) ⊂ L2(D′(R), P ) ⊂

P ′P (D
′(R)). By E⊗̂n′C we denote the space of all linear forms on E⊗̂nC , rather

than we try to interpret the elements as distributions. This is due to the fact
that EC is not necessarily a subspace of L2(R, dx). For φn ∈ E⊗̂n′C we can
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construct a distribution Qn(φn) ∈ P
′
P (D

′(R)) by the following definition: for

all m ∈ N and all ϕm ∈ E
⊗̂m
C

〈Qn(φn), Pm(ϕm)〉L2(D′(R),P ) := δn,m φn(ϕn).

Therefore, for any distribution Φ ∈ P ′P (D
′(R)) there exists a unique sequence

(φn)n∈N0
with φn ∈ E

⊗̂n′
C such that

Φ =
∞
∑

n=0

Qn(φn).

Explicitly, φn is determined by the equation

φn(ϕn) := 〈Φ, Pn(ϕn)〉L2(D′(R),P ) , ϕn ∈ E
⊗̂n
C .

So we can write any F ∈ L2(D′(R), P ) as F =
∑∞

n=0Qn(φn) for unique

φn ∈ E
⊗̂n′,n ∈ N0.

Example 1 A natural class of polynomials for the Lévy-Khinchin processes
are given by the so-called generalized Appell-polynomials of non-Gaussian
analysis, see [ADKS96], [KSWY98], [KSS97]. According to assumption (2)
the Fourier transform of P is holomorphic in a neighborhood of 0. Then one
can construct the polynomials via the following generating functional

eα,P (ϕ, ω) :=
ei〈ω,α(ϕ)〉

EP [ei〈·,α(ϕ)〉]
, ϕ ∈ D(R), ω ∈ D′(R),

where α : C → C is a function which is holomorphic and invertible around
zero with α(0) = 0. As eα,P (·, ω) is also a holomorphic function near 0 the
polynomials are defined by the Taylor expansion

eα,P (zϕ, ω) =
∞
∑

n=0

zn

n!
Pn(ϕ

⊗n)(ω).

Condition (C) holds, because by a direct calculation one sees that ‖Pn(ϕ
⊗n)‖L2(D′(R),P )

can be expressed as a polynomial of the terms: n,m ∈ N
∫

R

|ϕ(s)|2ν2(ds) and

∫

R

ϕ(s)mϕ(s)n
∫

|λ|>0

λn+mν3(dλ, ds).
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Hence this norm is continuous in E = ∩p≥1L
p(R, ν). In certain cases one can

choose α in such a way that these polynomials are orthogonal, see for example
[KSS97]. In [NS00] the authors construct a complete system of orthogonal
polynomials for Lévy-processes using powers of the jump parts. Using the
Lévy decomposition (a Lévy process can be written as a mixture of a Brownian
motion and Poisson processes) one can construct another chaotic orthogonal
decomposition of L2 (D′(R), P ), for details see [Itô56] and [Der90].

Example 2 For ϕ ∈ D(R) define iteratively the multiple Itô-integrals

I1(ϕ, t):=

∫ t

0

ϕ(s) dMs

In(ϕ, t):=

∫ t

0

ϕ(s) I−n−1(ϕ, s) dMs,

where I−n−1(ϕ, t) := lims↑t In−1(ϕ, s). If the compensator 〈M〉 is deterministic
then also In is a L2-martingale and

EP [In(ϕ, t)Im(ψ, t)] = δn,m
1

n!

(
∫ t

0

ϕ(s)ψ(s)σ(ds)

)n

, (3)

see [Mey76]. We define Pn(ϕ
⊗n) := In(ϕ,∞). Due to (3) the mapping Pn

can also be extended in L2-sense to E⊗̂nC . Injectivity of this mapping follows
from orthogonality. Condition (C) is called chaos representation property
in this context and does not hold automatically, i.e. Lévy processes have a
deterministic compensator, however the only Lévy processes which have the
chaos representation property are the trivial mixtures of a pure Gaussian and
a pure Poissonian process, cf. [Der90].

If for a closed subspace M ⊂ EC the conditional expectation w.r.t. FM
preserves the polynomials, i.e. for every n there exists a mapping πM,n :

E⊗̂nC →M⊗̂n such that for all ϕn ∈ E
⊗̂n
C

EP [Pn(ϕn)| FM] = Pn(πM,n(ϕn)).

then for any function F ∈ L2(D′(R), P ) with F =
∑∞

n=0Qn(φn) it is

EP [F | FM ] =
∞
∑

n=0

Qn(π
∗
M,n(φn)).
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Indeed, because for any ϕn ∈ E
⊗̂n
C it is

∫

D′(R)

EP [F | FM ] (ω) Pn(ϕn)(ω)P (dω)

=

∫

D′(R)

F (ω) EP [Pn(ϕn)| FM ] (ω)P (dω)

=

∫

D′(R)

F (ω) Pn(πM,n(ϕn))(ω)P (dω)

= φn (πM,n(ϕn)) = π∗M,n(φn) (ϕn)

=

〈

∞
∑

n=0

Qn(π
∗
M,n(φn)), Pn(ϕn)

〉

L2(D′(R),P )

.

Obviously, also (πM,n)
2 = πM,n.

Example 1 Let I ⊂ R be an interval. For M := ∩p≥1L
p(I, ν) we want to

compute the conditional expectation w.r.t. FI = FM. First, we observe that
we can write any ϕ ∈ E in the form ϕ = ϕ1 + ϕ2 with ϕ1 := ϕ11I ∈ M.
According to the infinite divisibility of P

EP

[

ei〈·,α(ϕ)〉
]

= EP

[

ei〈·,α(ϕ1)〉
]

EP

[

ei〈·,α(ϕ2)〉
]

and therefore, eα,P (ϕ, ω) = eα,P (ϕ1, ω)eα,P (ϕ2, ω). Since
{

ei〈·,ψ〉
∣

∣ψ ∈M
}

generates the σ-algebra FI one obtains for any F = ei〈·,ψ〉

∞
∑

n=0

zn

n!
E
[

F EP

[〈

Pn(·), ϕ
⊗n
〉∣

∣FI
]]

= E
[

ei〈·,ψ〉 eα,P (ϕ, ω)
]

= E
[

ei〈·,ψ〉 eα,P (ϕ1, ω)eα,P (ϕ2, ω)
]

= E [F eα,P (ϕ1, ω)]E [eα,P (ϕ2, ω)] = E [F eα,P (ϕ1, ω)] .

Thus
EP

[〈

Pn(·), ϕ
⊗n
〉∣

∣FI
]

=
〈

Pn(·), (ϕ11I)
⊗n
〉

.

Due to linearity of Pn we obtain for all ϕn ∈ E
⊗̂n
C that

EP [〈Pn(·), ϕn〉| FI ] =
〈

Pn(·), ϕn11
⊗n
I

〉

and for any F ∈ L2(D′(R), P ) of the form F =
∑∞

n=0Qn(φn) one can write

EP [F | FI ] =
∞
∑

n=0

Qn

(

φn(11
⊗n
I ·)

)

.
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Example 2 Let T > 0 and denote by F[0,T ] := FL2([0,T ],σ). For any ϕ ∈
L2(R, σ) it is

EP

[

Pn(ϕ
⊗n)

∣

∣F[0,T ]

]

= EP

[
∫ ∞

0

ϕ(s) I−n−1(ϕ, s) dMs

∣

∣

∣

∣

F[0,T ]

]

=

∫ T

0

ϕ(s) I−n−1(ϕ, s) dMs

= Pn
(

(ϕ11[0,T ])
⊗n
)

.

Hence π[0,T ],n(ϕn) = ϕn11
⊗n
[0,T ]. Thus for any F ∈ L2(D′(R), P ) of the form

F =
∑∞

n=0Qn(φn) one can write

EP

[

F | F[0,T ]

]

=
∞
∑

n=0

Qn

(

φn(11
⊗n
[0,T ]·)

)

.

Thus in both examples π[0,T ],n is the multiplication by 11⊗n[0,T ]. This allows
us to characterize martingales:

Proposition 1 Let (D′(R),F (D′(R)) , P ) be a probability space fulfilling con-
dition (R) and (C). Consider the filtration F[0,T ], T > 0. Assume that for

every T > 0 and ϕn ∈ E
⊗̂n
C it is 11[0,T ]E ⊂ E and

EP

[

Pn(ϕn)| F[0,T ]

]

= Pn(ϕn11
⊗n
[0,T ]).

Let F : D′(R) × [0,∞) → R be a (Ft)t≥0-adapted L2-process. Denote by

fn(t, ·) ∈
(

E⊗nC

)′
the kernels of F (t, ·), i.e., F (t, ·) =

∑∞
n=0Qn(fn(t, ·)). Then

(F (t, ·))t≥0 is a martingale iff for all s ≤ t one has fn(s, ·) = fn(t, 11
⊗n
[0,s]·).

If F is closed by a L2-random variable F (∞, ·) =
∑∞

n=0Qn(fn(∞, ·)) then
fn(s, ·) = fn(∞, 11⊗n[0,s]·).

Remark 2 Example 1 and Example 2 provide probability spaces fulfilling the
assumption of Proposition 1.

Proof : If F (t, ·) is a martingale then by definition for any s ≤ t is holds

∞
∑

n=0

Qn(fn(s, ·)) = F (s, ·) = EP [F (t, ·) |Fs ]

=
∞
∑

n=0

Qn(fn(t, 11
⊗n
[0,s]·)).
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Due to Condition (C), fn(s, ·) = fn(t, 11
⊗n
[0,s]·). The converse follows by the

same calculation. ¥

In order to have a richer analytical structure on the space of distributions,
larger spaces of test functions, equipped with weaker topologies, have to be
considered, see [BP96] and [GKS99]. The authors used that the multiplica-
tion w.r.t. 11⊗n[0,s] is a projection also for the scalar-products generating these
topologies.
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