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Abstract

Some a priori bounds for measures on configuration spaces are
considered. We establish relations between them and consequences
for corresponding measures (such as support properties etc.). Appli-
cations to Gibbs measures are discussed.

Keywords: Configuration space; correlation functions; Gibbs state.



1 Introduction

The space of configurations I'x over a Riemannian manifold X consists of
all locally finite subsets of X. Such spaces play an important role in the
topology, the theory of point processes, the mathematical physics and several
other areas of the mathematics and its applications. As objects of infinite
dimensional analysis configuration spaces form a class of infinite dimensional
manifolds which are not in the well-known categories of Banach or Fréchet
manifolds. Nevertheless, they can be equipped with a natural differentiable
structure (coming from the underlying manifold X) with quite rich analytic
and geometrical properties, see [1, 2].

The measure theory on configuration spaces has several specific aspects
comparing with the well developed one in the case of linear spaces. Namely,
in the linear case we have useful relations between such characteristics of
measure as moments, the Laplace transform, support and integrability prop-
erties for some classes of functions on linear spaces, see e.g. [4] for a review
and related historical comments and references. These characteristics need
to be modified properly in configuration space analysis. Important instruc-
tive ideas in this area are coming from the theory of stochastic processes and
statistical physics. In these applications measures on configuration spaces
correspond to point processes and states of continuous systems respectively
and in both areas we have already many deep results concerning properties
of particular classes of such measures.

The point of view developed in the present paper is motivated mainly by
results of classical statistical mechanics of continuous systems. In particular,
in pioneering works of R. L. Dobrushin [6] and D. Ruelle [24] dedicated to the
study of equilibrium states (Gibbs measures) in the case of pair potentials
were discovered several properties of these measures related with analysis of
their characteristics. Namely, the first characteristic of configuration space
measures is the system of correlation functions (that is the system of reduced
moments or coincidence densities in the point process theory). Correlation
functions can be considered as an analog of the moments of measures in the
linear space analysis. In the case of superstable pair potentials their sat-
isfy so-called Ruelle bound (RB) [24] which is very useful in applications.
Another important bound obtained in the same paper is related with the
density of finite volume projections of Gibbs measures (Ruelle probability
bound (RPB)) which also became a standard technical tool in the equilib-
rium statistical physics. In particular, (RPB) gives information about the



support of Gibbs measures. R.L.Dobrushin [6] proved exponential integra-
bility w.r.t. Gibbs measures of some local functions on configuration spaces
(Dobrushin exponential bound (DEB)) which also gives useful information
about these measures.

In the present paper we consider measures on configuration spaces which
satisfy (some generalizations of) the mentioned bounds. We have shown that
these bounds, in fact, are related among each other and do not need to be
restricted to the class of Gibbs measures. This is important, in particular, in
applications to non-equilibrium problems. More precisely, in the study of the
dynamics (e.g., Hamiltonian or stochastic) of continuous systems we need,
typically, to restrict the class of initial states assuming one or another kind of
a priori bounds on them. Actually, the necessity to transport the description
of the time evolution from the traditional classical mechanics point of view
(in terms of particle trajectories) to the evolution of states is a specific point
in the rigorous statistical physics of continuous systems. We refer the reader
to the excellent discussion of this concept in the review by R.L.Dobrushin,
Ya.G.Sinai and Yu.M.Suhov [7]. In concrete examples we can see that the
possibility to construct the time evolution of an initial state depends on the
level of the deviation from the equilibrium state (i.e., on the information
about ”how non-equilibrium is the initial state”).

Moreover, even in the case when the initial state is a Gibbs measure, the
time evolution usually does not preserve the Gibbs property (at least, in the
class of Gibbs measures with interactions of a finite order). But we can expect
that the time evolution can be realized in a class on configuration space
measures with certain a priori bounds. This hope is supported, in particular,
by recent results on the stochastic dynamics of infinite particle systems [15].
One of the aims of this paper is to clarify which kinds of a priori bounds can
be reasonable, in principle, for measures in the configuration space analysis
and how modifications of these bounds are reflected in the properties of the
measures (e.g., support properties etc.).

Note, that even in the case of Gibbs measures with pair potentials, mod-
ifications of classical bounds are useful. For example, a generalization of the
Ruelle bound for correlation functions, which we discussed in this paper, was
already used essentially in [2] for the construction of equilibrium gradient
stochastic dynamics of continuous systems with pair singular interactions.
An additional motivation for the analysis developed in this paper is related
with an important class of so called fermion and boson measures, see e.g. [21]
and references therein. Such measures are defined via explicitly given corre-



lation functions and do not admit clear Gibbs type descriptions. Only one
way to study the properties of such measures is based on using the bounds
on correlation functions and their consequences.

2 General facts and notations

Let R? be the d-dimensional Euclidean space. By O(R?¢), B(R?) we denote
the family of all open and Borel sets, respectively. O.(R?), B.(R?) denote
the system of all sets in O(R?), B(R?), respectively, which are bounded. The
space of n-point configuration is

T =10, = {ncR| gl =n}, neN :=NU{0},

where |A| denotes the cardinality of the set A. Analogously the space F((;K is

defined for A € B,(R?), which we denote for short by I'{".

For every A € B.(R?) one can define a mapping N, : Fg") — No; Na(n) ==

In N A|. For short we write ny := nN A. As a set, F(()")

symmetrization of

is equivalent to the

—~——

(Ri)m = {(1,...,20) € R)"| zp #xy if b #1},
ie. M/Sn, where S,, is the permutation group over {1,...,n}. Hence
F(()") inherits the structure of an n - d-dimensional manifold. Applying this we
can introduce a topology (’)(F(()")) on F(()”). The corresponding Borel o-algebra
B(an)) coincides with o (N |A € B.(R?)) . The space of finite configurations
Lo = [ en, Fg") is equipped with the topology of disjoint union O(T'y). A
set B € B(I'y) (the corresponding Borel o-algebra) is called bounded if there
exists a A € B,(R?) and an N € N such that B C | |, Pg{l).
The configuration space

I':'={yCR|[yNA|<oo, forall A € B,(R")}

is equipped with the vague topology. The Borel o-algebra B(T') is equal to the
smallest o-algebra for which all the mappings Ny : T' = Ny, Na(7y) := |[yNA|
are measurable, i.e.,

B(T) = o(Ny |A € B,(RY)



and filtration on I' given by

BA(F) = O'(NAI = Bc(Rd), A C A)

For every A € B.(R?) one can define a projection py : T' — T'x; pa(Y) := 1
and w.r.t. this projections I' is the projective limit of the spaces {I's} acp,(re)-
The following classes of function are used in the following: L°(T) is the set
of all measurable functions on 'y, LY (L) is the set of functions which have
additionally a local support, i.e. G € LY(Ty) if there exists A € B.(R?) such
that G Tro\r,= 0. Lps(I'o) denotes the measurable functions with bounded
support, B(Ty) the set of bounded measurable functions. On I" we consider
the set of a cylinder functions FL°(T"), i.e. the set of all measurable function
G € L°(T) which are measurable w.r.t. B,(T') for some A € B.(R%). These
functions are characterized by the following relation: F'(y) = F [, (7a)-

Next we would like to describe some facts from Harmonic analysis on
configuration space based on [11, 13].

The following mapping between functions on I'y, e.g. L (Ty), and func-
tions on I, e.g. FL°(T), plays a key role in our further considerations:

KG(y):=) G(§), 7eT,
§Ey

where G € L) (Ty), see e.g. [18, 19]. The summation in the latter expression
is extend over all finite subconfigurations of v, in symbols & € . K is linear,
positivity preserving, and invertible, with

K'F(n):= (-1)™F(¢), neT,. (1)
£Cn
It is easy to see that for all A € B.(R%), F € FLO(T', BA(I))
K~'F(n) = 1r, ()K" F(n), Vn €T (2)

Let M} (T') be the set of all probability measures p which have finite local
moments of all orders, i.e. [.|va|"u(dy) < +oo for all A € B.(R*) and
n € Ng. A measure p on I'y is called locally finite iff p(4) < oo for all
bounded sets A from B(T), the set of such measures is denoted by M¢(Ty).
One can define a transform K* : Mj (T') — My (Ty), which is dual to the
K-transform, i.e., for every pu € M. _(T), G € Byps(Ty) we have

/F KG(y)uldy) = / G(n) (K" 1) (dn).

To
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pu = K*p we call the correlation measure corresponding to p.
As shown in [11] for 4 € M} (T) and any G € L'(Ty, p,) the series

KG(y) =Y G(n), (3)

ney

is p-a.s. absolutely convergent. Furthermore, KG € L*(T, u) and

/ G(n) puldn) = / (KG)(7) pu(d). (4)

T'o T

Fix a non-atomic and locally finite measure o on (R¢, B(R?)). For any
n E/N\tﬁe product measure 0®" can be considered by restriction as a measure
on (R4)" and hence on I'{"”). The measure on I'") we denote by o™

The Lebesgue-Poisson measure \,, on [y is defined as \,, := ZZO:O 2—7;0(”).
Here z > 0 is the so called activity parameter. The restriction of \,, to 'y
will be also denoted by \,,.

The Poisson measure m,, on (I', B(T')) is given as the projective limit of
the family of measures {72, } \cp,(ra), Where 72, is the measure on I'y defined
by 7 =720},

A measure p € M} (T') is called locally absolutely continuous w.r.t. 7,
iff p1p == popy* is absolutely continuous with respect to 72 = ., o p;! for
all A € By(R%). In this case p, := K*u is absolutely continuous w.r.t A,,.
We denote by k(1) .= %(n), n € T,.

i o
The functions

n) . d\n
kM (R — RY (5)
k,&")(xl, N R ku({zy, .5 2n}), 0f (21, e ,Tn) € (RY)"
0, otherwise

are well known correlation functions of statistical physics, see e.g [25], [24].

3 A priori bounds

Let o be Lebesgue measure and ||z|| = maxy |z, = € R, For A € B.(R?),
let

I = sup ||z —yll
z,yeA



and |A| denote the Lebesgue measure of A. The symbol | - | may therefore
represent cardinality or Lebesgue measure, but the meaning will always be
clear from the context.

Let V : Fﬁf) — R be a pair potential.

Definition 3.1 A potential V is called stable (see [25]) iff there exists a
constant B > 0 such that for any A € B.(R?) and any configuration v € 'y

holds
> Viz,y) > -Bll. (6)

{z,y}Cy

In the following we assume that all potentials under consideration are stable.
Consider pu € M;_(T) locally absolutely continuous w.r.t. 7, and three
type of bounds on it.
We will say that a measure u satisfies the generalized Ruelle bound with
potential V' if the following holds:

e (GRB)y: The correlation function k,(n) satisfies the inequality

ku(n) < CMexp | = Y V(z,y)|, nely, (7)

{z,y}Cn
with some C > 0.

We will say that a measure yu satisfies the Ruelle’s probability bound if
the following holds:

e (RPB): For any g > 0 there exist constants o > 0 and 6 € R (may be
g dependent) such that for any A € B.(R%), [y > g and N € Ny

w({y] 1l = N}) < exp {—a]f—g +5zz}. ®)

We will say that a measure p satisfies the Dobrushin’s exponential bound
of type A > 0 and order p > 0 if the following holds:

o (DEB)», p): For every A € B.(R%) there exists a constant Cy > 0 such
that

/rem'pﬂ(dv) < Ch. 9)



Remark 3.1 Obviously, for any A € B.(R%) with Iy = 0 the bound (9) holds
automatically. Therefore, in the sequel we will consider (DEB)(y, p) only for
A € B.(R%), I, > 0.

Definition 3.2 A potential V 1is called superstable in the sense of Ginibre
(see [9, 20]) iff for any g > 0 there exist A > 0 and B > 0 (may be g
dependent) such that for any A € B.(R%), Iy > g and any configuration
v € I'p holds

v[”
A

{zy}Cvy

In the sequel, we will write sometimes o, 64, Ay, By, instead of o, 9, A, B,
to emphasize that these constants depend on g.

Theorem 3.1

1. For any A > 0 and p € (0, 1]
(GRB)y = (DEB)y, .
2. Let V' be superstable in the sense of Ginibre. Then
2.1. (GRB)y = (RPB),
2.2. forany A >0 andp € (1,2)
(GRB)y = (DEB)y, .
2.8. forany A >0 and A € B,(R?), 0 <l < A\t
(GRB)V = (DEB)()\’ 2)-
3. For any A\ >0 and p € (0,2)
(RPB) = (DEB)()\’ p)-
4. For any A\ >0 (DEB),, 2 with Cy < ®%, A € B,(R?), § > 0 implies (RPB).

Proof.
1. Using (1), stability of V' and according to the bound on the correlation
functions we have

|[K~ [ pu(dn) = / pu(dn) <

I'a

Z(_l)ln\ilex\lﬁlp

Ta £Cn

X _n
< E:Z_/ > M e Ewwyctoneny VN gy da,, <
< A <
n=0

" ec{z1,0mTn}



[e.e] Zn
< Z o /n Z MElomeBrdgy .. dx, = exp {22C|A|TEY.
=0

A fC{m,...,wn}
Because of (2) and (4) we conclude
/ A p(dy) = | KT [] pu(dn) < exp {22C|A1PY.
r I'a

2. Now suppose that V is superstable in the sense of Ginibre.
2.1. Define Sy :={y € T'| |7a] > N}, A € B.(R?). Let g > 0 be any and
given. Then, using (1) for any A € B.(R?), I, > g we have

|K~! s, (m)]| pu(dn) =

Ta

:/FA

According to the bound on the correlation functions and the superstability
for given g, the latter expression can be estimated by

/ Ls,(n)C" D" em Ztemcn V@, (dn) <
T'a

£Cn,l¢I>2N

> (=)™, (€)

§Cn

puldn) = / o) S (=1)™€] g, (dn).

£Cn,|E|>N

2~ N?
< / 1, (n)(2C) e AmM lAd+B\n|,\w(d77) < exp {_Al—d + 2zCeBl/‘{l}.
I'p A

In the last inequality we have used the fact that integration actually extends
only over allm € I'y : |p| > N.
Finally, (2) and (4) give us

NZ
(O] bl = N9 = [ K sy i) < exp { ~aTg + 220718,
Ta A

2.2. Let A € B.(R%), 5 > 0 be arbitrary and fixed. Using (1) we have

K ot < [ S exw (ePYplan)

Agcn



The estimation for the correlation functions and the superstability of V' for
g = 5 imply the following bound for the latter integral

/ 3 e ART P Bl gl \  (dn) <
T

AgCn
< / (20)\nleBlnleA\nlp—Alelﬂ\2)\w(dn) < 6230\A|€B+CX’ (11)
T'a

where C} > 0 is some constant s.t.

A

Alnf” = 3 In* < G}

A

Therefore, using (2) and (4) we have

/ AP p(dy) = | K [N py(dy) < €2CNCHCR
T Ta

2.8. Doing the same as in 2.2 for any A € B,(R?), 0 < I, < A;, A7 we

obtain
/F A

S Z m / Z )\|f| AlAl/_\ n +BlAndl' d (12)

n=0 fC{$1: ,.CEn}
Because [ < A;, A1, (12) is bounded by

K[| gy (an) <

o0

B
ZC / |§|2—n +B1And.’l? dl‘n < eZzC|A|e N
E 1 5 >
n=0 -

§C{w1 mn}

The statement is now a direct consequence of (2) and (4).

3. To prove this part of the theorem we need the following lemma which
follows directly from the definition of distribution function for a random
variable.

Lemma 3.1 For any measurable £ : T — R, and differentiable f : Ry — R,
such that f(0) = 0 we have

/f E()ldr) = / F@)u{y €T | €() > 2})da



Using Lemma 3.1 for any A € B.(R?), [y > 0 we have

/Fe’\”"p,u(d’Y) = /Ooou ({7 Al > (lnﬂ)z }) dy. (13)

Due to (RPB) for g =I5 we bound (13) by

exp (2)\2/1’l/‘3a*1)ﬁ 00 1 2/p
/ [ } 1dy +/ , . €Xp {—a( nz?p) — + 6l dy.
0 exp {(2)\2/”1‘{(1*1)2—_1’} A lA

A direct computation gives the following estimation for the latter expression:
2exp [0l + (2A*/P1da 1)),

4. Let (DEB),, ) holds for some A > 0 with Cy < e‘”f\l, A € B.(RY),
0 > 0 and g > 0 be arbitrary and given.

For every A € B.(R%), [, > g consider a function g (z) = ea'7® 4 >0,
0 < o < Ag%. This function is increasing and [, ga(|7a|)p(dy) < Ca (it
follows from (DEB),, 2y and inequality [y > g).

Thus, the generalized Chebyshev inequality shows that for any A €
Bc(Rd), ZA Z qg:

Jr ga(lval)p(dr)

eaN215¢

pdy| Il > NY) < < Cpe @M < oM m

For each i € Z¢, let
Qi={reR i, —1/2<r, <ip+1/2,k=1,...,d}.

Define |y;| = |yNQ;|. For k € N, let A be the hypercube of the sidelength
2k — 1 centered at the origin in R?. Note, that [Ag| = 1§ = (2k—1)%, k e N.
We will also sometimes regard A as a subset of Z? by letting A, represent
Ax N Z4 For i € Z¢ let In, ||i]| = max{1,1n||3||}.

Following Ruelle [25] a measure p is called tempered if y is supported by
the set

Re = J Rw,
N=1
where Ry = {y € T | DJcx, [7il? < N?[Agl, V & > 1}

10



Consider two subsets of the configuration space:

C8

N=1
where Py = {y €T | |y, | < N|Ag|, Vk>1} and
U = U Un,
n=1

where U, = {y € T | |7;| < n(ln, ||i]))z, Vi € Z%}.
Obviously, Ry C Py and for any tempered measure p with (RPB), it is
also possible to show that u(Uy) =1 (see [10, 16]).

Proposition 3.1 (RPB) implies u(Py) = 1.
Proof. Obviously,

M\Po= () Uy el | | > NIA[}

N>1k>1

Using o - semi-additivity and monotonicity of the measure ;1 we have

uT\P) < lim 3™ u({y €T | fya,| > NIAs[}). (14)

k>1
Due to (RPB) one can show that the right-hand side of (14) equals to 0. W

Remark 3.2 Proposition 3.1 holds, if (RPB) is replaced by the following
weaker probability bound:

there exist constants o > 0 and 0 € R such that for any N > Ny, Ng € N
and k € N

p({r [ ael = NIAg|}) < exp{—(aN = 8)[Ax}- (15)
Proposition 3.2 (RPB) implies u(Us) = 1.
Proof. Using

MNUso = () U{r el | vl > nling [Jil]) 2},

n>14czd

11



o - semi-additivity and monotonicity of the measure u we have
) AL
p(O\Us) < lim 3™ u(fy €T [ |l > n(n, [i)2). (16)
€2

Due to (RPB) we estimate (16) by

n—00 n—00 .
1€Z4 =3

o0
lim Z e*(an2(ln+ 1iD=0) < Tim 224 14ed Z Z-dflefmﬂ i _ o m

Remark 3.3 We will say that a measure u satisfy (RPB)?, p > 0 if the
following holds:

e (RPB)?: For any g > 0 there exist constants « > 0 and 6 € R (may
be g dependent) such that for any A € B.(R¢), I, > g and N > N, for
some Ny € N

WO 1l 2 V) < exp { ~aTg + 4. (17)

Simalar to the proof of Proposition 3.2 one can show that for any p > 0 the
fulfillment of (RPB)P on the sets Q;, i € Z¢ implies u(U%) = 1. Here

us, = J U,
n=1
U2 = {y €T | |l < n(lng ||i])r, Vi e Z4).

4 Stronger consequences of generalized Ru-
elle bound

In this chapter we describe further conclusions which follow from (GRB)y .
As before one can consider the partition of R? on cubes, but now with
sidelength equal to g > 0. Namely, for each i € Z% and any g > 0 let

Q! = {r € R glix — 1/2) < < glix + 1/2), k= 1,....d}
and [,| = |71 Q!

12



By J,(R?) we denote all finite unions of cubes of the form @Y (such
sets are used in the construction of the Jordan measure). Sometimes we will
regard A € J,(R?) as a subset of Z? by letting A represent {i € Z¢| Q7 C A}.

Let W : 'y — R be a measurable increasing function, i.e. for v, v € I’y
st.yCy s W(y) <W().

We will say that a measure p satisfies the (RPB)Y if the following holds:

e (RPB)Y: For any g > 0 there exist constants B > 0 and § € R (may
be g dependent) such that for any A € J,(R?), any configuration y € T'p

and L € Ry
p{y [ W) 2 L}) < exp{—L+5|A[}, (18)
and
> Viz,y)—W(y) = —Bll. (19)
{zy}Cy

Proposition 4.1 Suppose that there exists a measurable increasing function
W : Ty — R which satisfies (19). Then (GRB)y implies (RPB)Y .

Proof. Let g > 0 and A € J,(R?) be arbitrary. Define S := {y € | W(ya) >
L}. Then using (19) we have

Lg(n)e” Ytzyrcn V(EY) < ]ls(n)efW(n)JrB\nl < efL+B\n|, neTy.

Therefore, similarly to the proof of the Theorem 3.1(2.1) we obtain

pw({y| Wya) > L}) < eL/ @C)1eBhl),  (dn) = o L+2:CP A m

Ta

Remark 4.1 For any 0 < e < 1 inequality (18) implies
/eW('W‘)I_Eu(d’)/) < Ch, A € B.(R?)
r

with some Cy > 0.

Indeed, let g > 0 be given. We increase any A € B.(RY) to a set Ay €
Ty (R?) which is a union of all cubes Q; 4, which have nonempty intersection
with A. Then using Lemma 3.1 and the fact that the function W is increasing
we have

/FeW‘“)”u(dv) < /Ooou ({v‘ W(ta,) > (Iny) ™= }) dy.

13



Inequality (18) implies the following bound for the latter integral:
exp [20-)! 00 _
/ p[ ] 1dy—|—/ e_(1ny)(1—e) 1+‘5|A‘7‘dy_ (20)
0 exp [2(1—5)5_1]
A direct calculation gives us bound for (20):
2exp [6]As| + 20797,

In the literature different non-equivalent versions of the Ruelle’s probabil-
ity bound are known. The definition of (RPB) we used here can be found in
[10], [16]. Besides this bound, Ruelle in [25] used also another one. Namely,
we will say that a measure p satisfies the strong Ruelle’s probability bound
if the following holds:

e (SRPB): For any g > 0 there ezist constants o > 0 and 6 € R (may be
g dependent) such that for any A € J,(R?) and N € N

«({

As shown in [25] (SRPB) implies (RPB).

> gl 2 N?[A }) <exp{—(aN*—0d)Al}.  (21)

€A

Definition 4.1 A potential V is called superstable in the sense of Ruelle [25]
if for any g > 0 there exist A > 0, B > 0 (may be g dependent) such that
for any A € J,(R?) and any v € Ty

D Viz,y) = ) [Alvigl* = Blvigl]
{zy}cy icA
Lemma 4.1 Ruelle’s supestability implies Ginibre’s supestability.

Proof. Let g > 0 be given. We first increase, as before, any A € B,(R?), I, >
g to a set Ay € J,(R*) which is a union of all cubes Q;4, which have
nonempty intersection with A. Then for any v € I'y C I'y,, Ruelle’s su-
pestability gives

2 gd|7|2
> " Viz,y) > > Aligl —BWIEA—IA | — Bly.
{z,y}Cy i€y J

14



Because [, > ¢, one can show that for large x > 1 the following inequality
holds
[Ag| < Kl

and the assertion of the lemma is now obvious. |
Proposition 4.2 Let V be superstable in the sense of Ruelle. Then
(GRB)y = (SRPB).

Proof. 1t follows immediately from Proposition 4.1 by choosing W(y) =
A e ligl?- W

Proposition 4.3 (SRPB) implies u(Ry) = 1.

Proof. Let, as above, A, denote the hypercube of sidelength 2k — 1 centered
at the origin in R?. Using the equality

MRy = ﬂ U{7 el Z [:l? > N?|A4l},

N>1k>1 i€l

o - semi-additivity and monotonicity of the measure u, we have

p(T\R) < lim ZN {yeT | D 1wl > N?|Awl}). (22)

ZEAk

Due to (SRPB) for g = 1 we bound (22) by

lim g e~ (@N?=0)Akl — iy g e (aN?=0)2k-1)? _
N—o0 N—oo
k>1 k>1

Remark 4.2 Proposition 4.3 holds if in (SRPB) we substitute (21) by the
following weaker probability bound:
for any N > Ny, Ny € N,

" ({7 > 1igl?

ieA
Corollary 4.1 Let V be superstable in the sense of Ruelle. Then

> N?\A\}) <exp{-(aN-d)A}}.  (23)

(GRB)y = p(Ru) = i(Pa) = p(Usc) = L.



5 Examples

In this chapter we consider some class of examples known from the statistical
physics to which the results of this article can be applied. One of them is
related to the so-called Gibbs states (see [8] for more details) and another
with states constructed by a given family of correlation functions (see [3]).
Example 1. (Gibbs states with pair potentials).
The Hamiltonian EY : 'y — R which corresponds to the potential V'
(even function on R?) is defined by

E'(m)= Y V(z—y), n€To, n|>2

{z,y}Cn

Having in mind applications in mathematical physics, we will always assume
positivity of V' for small distances. More precisely, we suppose that there
exists g, 0 < g < oo, such that V(z) > 0 for |z| < g.

For fixed V we will write for short E = EV and for A € B.(R?%), n € ['s
we will sometimes write Fy(n) instead of E(n).

For a given 4 € [' define the interaction energy between n € I'y and
Fae = N AE, A¢ = RH\A as

Wa(nly) = Z Viz—y). (24)
Define
Ex(n|7) = Ex(n) + Wa(n]7).

Let A € B,(R?) and let 4 € I'. The finite volume Gibbs state with
boundary configuration 4 for E and z > 0 is

ma(an] 7) = S ),

where

%M=LemP&WﬂMMM-

This finite volume Gibbs state is well defined if for any A € B.(R%), n € '
and 7 € T the interaction energy W, (n|7) does not become —oo and partition
function Z, (%) is finite. The assumptions, under which these conditions hold
true will be introduced later.

16



When 7 = 0, let ua(dn|0) = pa(dn).
Let {ma} denote the specification associated with z and the Hamiltonian
E (see [23]), which is defined on I" by

w9 = [ ] )

where A’ ={neTxr: nU(Fa) € A}, A € B(T).
A probability measure p on T is called a Gibbs state for F and z if

u(ma(Al 7)) = pu(A)

for every A € B(T') and every A € B.(R?).

This relation is well known (DLR)-equation (Dobrushin-Lanford-Ruelle
equation), see (8] for more details. The class of all Gibbs states we denote
by G(V, z).

About the potential V' we will assume:

Assumption 5.1

1. Reqularity:

11— e V@|o(dx) < 0.
Rd

2. 'V s superstable in the sense of Ruelle.

3.V is lower reqular, e.g. there exists a positive function 1 on the
nonnegative integers such that y(m) < Km™> for m > 1, and for any Ay
and Ay which are each finite unions of unit cubes of the form Q;, with v C Ay
and 5y C A,

W) > =33 wllli— il

€A1 JEA2

where K >0, A > d are fized.
Let

Vi(z)=_inf V(), V () =min(0, inf V(7)),

7:0<|7|<|z| T:|z—F|<3g
V(r) = max(0, sup V(2)),

Fo-<3g

17



where the symbol | - | represent Euclidean norm in R¢, and let

1

Ci=5007 [ Vi@t el s,
0<|z|<g

Cy = —n”/Q/ V™ (z)dw,
R
where v, is the volume of a d - dimensional sphere of radius 1.

Assumption 5.2 ([6])
1. The inequalities Cy < Cy, Cy < 00 hold.

2. For some D < 00 : V(z)dz < oo.

fz:\z\ZD

It is well known from [25] that under Assumption 5.1 the set of tempered
Gibbs states is nonempty. Let us denote this set by G;(V z).

Analogous existence result for Gibbs states under Assumption 5.2 can be
found in [6].

The following propositions collect some known results concerning Gibbs
measures.

Proposition 5.1 ([2]) Suppose that Assumption 5.1 is fulfilled. Then for
any p € Gi(V, z) the correlation functions k,&m (x1,...,2,) satisfy the follow-
ing inequality

klg”) (1, .-, Tq) < C"exp [— Z Vi(z; — x])] : (25)

with some C > 0.

Proposition 5.2 ([10]) Suppose that Assumptions 5.1.2, 5.1.3 hold. Let A
be a finite union of unit cubes of the form Q;. Suppose AD A, A€ B.(R?).
For any p € G,(V, z) there exist constants o > 0 and 6, depending only on z
(independent ofK and A), such that for any N € Ny

pr({7 ] [7al = NIAJ}) < exp {—(aN? - §)[Al}. (26)

Proposition 5.3 ([6]) Suppose that Assumption 5.2 holds and let ¢(y), 0 <
Yy < 00, be a positive monotonically increasing convex function is such that
for some h >0, L < o0

@o(m) < Lexp{m*(H(m) — g %Co — h)},m=0,1,...,

18



where

T _ _ 1y —de
H(m) = 37w [ V@)L + g7 ol e
zig(md —1)~1<|z|<g

_ Then for any p € G(V, z) there exists a constant Cp(p) such that for any
A € B.(R?) the following inequality holds

[ elinbusd) < Cuo), for all Ak A€ B (@D
The concll\itions on function ¢ are satisfied if
o(m) =exp{dm?}, 0<d< (C;—Cyg™ .
Corollary 5.1 Under Assumption 5.1 for any p € Gy(V, z) we have:
e (RPB) (Ruelle’s probability bound (26)).
e Dobrushin’s bound (27) for all bounded A C A such that Iy < gd~3,
e Dobrushin’s bound (27) for function o(x) = e, X >0, p€ (0,2) .

Under Assumptions 5.1.2, 5.1.3 for any p € G,(V, z) we have Dobrushin’s
bound for function o(z) = e}, A >0, p € (0,2).
The conditions of Proposition 5.3 imply (RPB).

Proof. We will prove only that under Assumption 5.1 for any p € Gy(V, z)
we have Dobrushin’s bound for every bounded A C A such that I, < gd~ 2
and that the conditions of Proposition 5.3 imply (RPB). The proof of the
remaining statements in this corollary is a direct consequence of Theorem
3.1 for measure yu = p3.

Using (1) and an estimate of the function ¢ we have

/FA\K o(In)]| pu(dn) < / > " @€ puy (dn) <

Taecn

L / S exp {[€LH(E]) — g7Cs — Wy (d). (25)

Agcn
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The estimate on the correlation functions implies the bound for (28)

Z / Z lPH(E)-Eie; VE@i—m) On . day. (29)

Ec{mla 71'774}

We bound e~ %i<i V(®~%) ysing the following result from [6]: there exists
mg > 2% s.t. for any A € B.(R?), [, < gd_% and n € Ty, |n| > myg holds

EY () > [nl*H (|n]).

Therefore, we can estimate (29) by

LemOH(|mo|)Z 2ZC|A| Z 22C|A| <LezzC\A|+mgH(|m0|)_

n=mo+1

The equalities (2) and (4) give

| elimbnstan = / K[| ])]puldn) < Le2:CAmiitmo)

A

To show that conditions of Proposition 5.3 imply (RP B) one should take
in the proof of Theorem 3.1(4) the constant A = C; — Cy¢~% and use the fact
from [6] that Cy < el for some 6 > 0. W

Remark 5.1 Let us note that the Poisson measure 7,, satisfy (15). Really,
we have

T ({7] [7a] = NIAJ}) =

L AT, o > (2|A]) n!
> e A iy 3 CIAY a0

3
! (n+ ngp)!
n>N|A| n=0 T 0)

where ng is the smallest integer greater than or equal to N|A|. Using Stirling
formula and considering N > €2z we can bound (30) by e VM.
Moreover, this implies T,,(Poo) = m,0 (UL) = 1. [ ]

Remark 5.2 The Poisson measure m,, does not satisfy (RPB). Indeed,

suppose that (RPB) for m,, holds. Then from Theorem 3.1 we have that 7,
satisfy (DEB)(, 2—), where 0 < e < 1. But by the definition of the Poisson

measure
2—¢ _ A
/em ) = e ZWZ | |
T
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where the latter series obviously diverges.
So, our assumption that the Poisson measure satisfies (RPB) is false.l

Example 2. Let V : R x R? — RU{oc} be a nonnegative pair potential
and the function kY : Ty — R defined by

kl(n) =a, In| =1,
kY (@) =1.

with some constant a > 0.
Assume that ¢ := supgega [a(1—e7V@¥)dy < 0o. As shown in [3] under
assumption ace < 1 there exists probability measure yu on B(T') s.t.

dp
ku(m) = —5=(n) = kY (n), n € Ty,

where o denotes the Lebesgue measure on R¢. Moreover, the bound 0 <
ku(n) < a n e Ty implies the uniqueness (c.f. [11]).

The measure p is not Gibbs state associated with a pair potential. More-
over, it is difficult to show that u corresponds to a potential in an explicit
form. Even if this is true, such a potential should include interactions of
all orders. In spite of this, we know that correlation functions of p satisfy
(GRB)y. Therefore, all results of this paper connected with (GRB)y are
applicable to this measure. In particular, we have information about sup-
port properties and probability bounds depending on the behavior of V' on
the diagonal.
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