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Abstract

We analyze the spectral properties of Stark operators perturbed by

a non decaying potential. We prove that if the potential has a bounded

partial derivative with respect to the electric �eld and the positive

component of this derivative is small at in�nity then the spectrum

of the corresponding operator is purely absolutely continuous. In the

one dimensional case the derivative does not need to be small. We

also prove that the tail of the partial derivative of the potential plays

a fundamental role in the preservation of the absolute continuity of

the spectrum. This is illustrated in an example of smooth potential

with bounded partial derivative but the corresponding stark operator

has a dense point spectrum.

1 Introduction and main results

1.1. Our purpose in this paper is to analyze the spectral properties of Stark

Hamiltonians with a non-decaying potentials. We �rst describe a class of

bounded potentials V for which the corresponding Hamiltonian H has an

absolutely continuous spectrum with at most a discrete set as singular spec-

trum. Basically, our class consists of suÆciently regular potential having a

small (at in�nity) partial derivative with respect to the electric �eld. In the

one dimensional case the derivative does not need to be small. Afterwards,
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we prove that the tail of the partial derivative has a fundamental role in the

possible occurrence of a rich singular spectrum. Indeed, in the case when

the dimension d � 2 we construct a smooth potential with bounded partial

derivative for which the corresponding stark operator has a dense point spec-

trum.

The operator we are interested with is given by

H = H0 + V

acting in H = L2(Rd), where d � 1 is an integer, and

H0 = ��� <
!

F ; x >

is the free Stark operator and V is the multiplication operator by a real-valued

function denoted by the same symbol V . Here above <
!

F; x > denotes the

scalar product between a given vector
!

F= (F1; � � � ; Fd) 2 Rd , which represent

the constant electric �eld, and x = (x1; � � � ; xd) with xi is the multiplication

operator by the independent variable xi.

The operator H describes the motion of a non-relativistic charged particle

moving in a constant electric �eld
!

F and submitted to the action of an

external force given by the potential V .

Let us remark that one can assume, without loss of generality, that
!

F=

F (1; 0; � � � ; 0), with F > 0, and so H0 becomes

H0 = ��� F � x1;

which is more convenient for notational reasons.

Let us denote Pj = �i@xj for each j = 1; � � � ; d, and consider the uni-

tary operator U = e�iP1(�P
2
1
=3+P 2

2
+���+P 2

d ): A simple commutation shows that

U�1H0U = F � x1: Then H0 de�nes a self-adjoint operator in H and its

spectrum is purely absolutely continuous:(
�ac(H0) = �ac(H0) = R

�sc(H0) = �pp(H0) = ;:
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For simplicity assume that the potential V is bounded (see the remark just

after Theorem 3). Then H is self-adjoint operator in H.

It is natural to study the stability of the last spectral structure after a per-

turbation by a potential V . By stability we mean that the perturbed Hamil-

tonian H, has an absolutely continuous spectrum, has no singular continuous

spectrum, and has at most a discrete set of possible eigenvalues.

These considerations have a long history and there is a large literature about

it, for example [16, 17, 2, 9, 14, 11] and references therein. A precise discus-

sion of these references will be given during the rest of this introduction in

which we shall describe our main results.

1.2. Let us start by discussing the one dimensional case. It is well known

that if V is of class BC2 (i.e. two times continuously di�erentiable, bounded

with its derivatives) then the spectrum of H is purely absolutely continuous.

This can be deduced from Titchmarsh [16] (see also [17]). This result was be

done by using the standard techniques of ordinary di�erential equations, and

was be re-obtained by Bentosela and all [3] by using the positive commutator

approach.

This absolute continuity of the spectrum of the Stark operator can be partial-

ly or completely destroyed, if the potential is not suÆciently regular. Indeed,

Naboko and Pushnitski [12] constructed an example of bounded potential (in

fact V even tends to zero at in�nity, but its derivative tends to in�nity at in-

�nity), and the corresponding Hamiltonian H has a dense set of eigenvalues,

i.e. �pp(H) = R. Let us mention that, combining this result with Kiselev's

result [11] one can conclude that in this situation the spectrum is mixt. Ex-

amples of strongly singular potential V such that the corresponding operator

H has no absolutely continuous spectrum can be found in [7] (see also [6]).

This brings us to ask the natural question: what is the minimal regularity of

V ensuring the absolute continuity of H?

We have proved in [14], that if V is of class BC1 (i.e. continuously di�er-

entiable, bounded with its derivative), and that V 0 is Dini continuous, that
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is Z 1

0

sup
x2R

jV (x+ ")� V (x)jd"
"
<1: (1.1)

then the absolute continuity of the spectrum of H is preserved in the sense

explained above. This result was be re obtained partially by Kiselev in [11]

by using the asymptotic Gilbert-Pearson method. Here we give slightly more

precise result.

Theorem 1 Assume that V is of class BC1 with uniformly continuous �rst

derivative. Then the set �p(H) of eigenvalues of H is discrete.

If V is smooth in the Zygmund's sense, i.e.Z 1

0

sup
x2R

jV (x+ ")� 2V (x) + V (x� ")jd"
"
<1: (1.2)

Then H has no singular continuous spectrum.

Remarks.

1. Let us mention that if V 0 is Dini continuous then the assumption 1.2

holds, which means that the present result is more precise than that of

[14].

2. The fact that there is no restriction on the bound of the potential V

nor of its derivatives allows to cover a large class of periodic, quasi-

periodic or random potential. As we shall see this is not the case in

the multidimensional case (see Theorem 3 and 4).

3. Roughly speaking the last Theorem means that if V is of class BC1+0

then H has no singular continuous spectrum. An interesting question

concerns the stability of this property only under BC1 assumption on

V . We expect that the answer is positive.

4. A more subtle question concerns whether there exist a potential V that

is H�older continuous of order 0 < � < 1 for which the singular spectrum

can �lls (a part of) the real axis. Taking into account the result of [12],

one can expect that it is true, in that case it would be interesting to

construct such potentials.
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Let us mention that concerning the eigenvalues of H Theorem 1 only ensures

the absence of the accumulation points of eigenvalues, but does not tells us

whether or not some eigenvalues appear. In the following we give an example

of smooth potential V bounded with its derivative and the corresponding

Stark operator has an eigenvalue.

Theorem 2 For each real number � there exist a real-valued potential V 2
C1(R), such that V and V 0 are bounded and � is an eigenvalue of H.

To prove such a Theorem we use the ideas of [12]. We mention however that

in the last the derivative of the potential is certainly unbounded. We also

mention that Theorem 2 holds for any �nite number of eigenvalues.

1.3. Now let us study the multidimensional case (d � 1). In this case there

is an important literature on the spectral theory of Stark Hamiltonians. we

refer the reader to [2, 9, 10] and references therein. In the most part of these

works V or rV need to tend to zero at in�nity in some direction. This can

be explained partially as follows. In one dimensional case the derivative of a

bounded regular potential is compact relatively to H0. This property can be

lost in the multi-dimensional case if V or @x1V does not tend to zero at in�nity

in some direction. Let us mention, however, Jensen's work [10] dealing with

some non-decaying potential. But this result is basically one dimensional

as it is explained by the author's proofs. Our main result is the following

theorem. For a function W we denote by and W+ its positive part de�ned

by W+(x) = sup(0;W (x)). Let us set x = (x1; x
0) with x0 = (x2; � � � ; xd).

Theorem 3 Assume that V and @x1V are bounded and that k(@1V )+k1 <

F . Then H has no eigenvalues.

If moreoverZ 1

0

sup
x2Rd

jV (x1 + "; x0)� 2V (x) + V (x1 � "; x0)jd"
"
<1 (1.3)

then H has no singular continuous spectrum.

Remarks
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1. The boundedness of the potential V is not needed. Actually, V has only

to be such that H de�nes a self-adjoint operator in H. Let us mention,

however, that in Theorem 1 this fact is not true. Indeed, in that case

the boundedness of V plays a fundamental role in our argument.

2. It is not diÆcult to show that the assumption k(@1V )+k1 < F can be

replaced by only the smallness at in�nity, i.e.

lim sup
jxj!1

(@1V )+(x) < F:

In such case, a possible set of eigenvalues of H can appear. But all

these eigenvalues are �nitely degenerate and form at most a discrete

set.

Examples.

1. It is clear that our Theorem covers the case when @1V tends to zero at

in�nity, but without asking that the potential V itself tends to zero at

in�nity as it is usually assumed for example in the papers cited above.

2. In the second example we give another kind of potentials satisfying our

assumptions. Let q : Rd �! R be a bounded function satisfying the

regularity assumption of Theorem 1.2. Let us set the potential

V�(x) = q(�x1; x
0);

Where � is a real number playing the role of a coupling constant. Then

there exist a constant �0 > 0 such that for each j�j � �0 the operator

H� = H0 + V� has a purely absolutely continuous spectrum.

One can think that the derivative @1V does not need to be small at in�nity,

and that assumption is only related to the used approach. In the following

Theorem we illustrate the importance of the tail of such partial derivative in

the preservation of the absolute continuity of the spectrum, or more precisely

in the possible occurrence of a rich singular spectrum. Indeed, we show that

if the derivative @1V is only bounded (but not suÆciently small) then a dense

point spectrum could appear.
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Theorem 4 Let � be a �xed real number. Then there exist a real-valued po-

tential V 2 C1(Rd) such that V and @1V are bounded and [�;1) � �pp(H).

The paper is organized as follows. In section 2 we shall describe what we

need in our proofs. Section 3 is devoted to prove Theorem 1.1 and 1-3. In

section 4 we prove Theorem 2 and 4.

Acknowledgements : The author take this opportunity to express his

gratitude to Pr. A. Klein and Pr. S. Jitomirskaya for their hospitality at

the department of Mathematics at UC, Irvine, in which this work has been

partially done.

2 Basic notions

Our proofs are based on the conjugate operator method. It is an abstract

theory which proves that an Hamiltonian H has an absolutely continuous

spectrum if it has a conjugate operator A, i.e. a self-adjoint operator such

that the commutator [H; iA] is strictly positive in an adequate sense. In this

section we give a short description of the main points of this theory, which

will be used in our proofs. For more details concerning the results of this

section we refer the reader to the Amrein, Boutet de Monvel and Georgescu's

monograph [1] and the articles [4, 13].

Let H;A be two self-adjoint operators in a Hilbert space H. The C0-group

associated to A will be denoted by e�iAt; t 2 R. We shall denote by R(z) =

(H � z)�1 the resolvent of H for a complex number z 2 C n �(H).

De�nition 1 1. We say that H is of class C1(A) if the map

R 3 t 7�! e�iAtR(z)eiAt 2 B(H)

is strongly of class C1, for some (and so for any) complex z 2 C n R
2. We say that H is A-regular ifZ 1

0

ke�iA"R(z)eiA" � 2R(z) + eiA"R(z)e�iA"kd"
"
<1:
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Remark the fact that if H is A-regular then H is of class C1(A). Assume

that H is of class C1(A). Then the intersection D(A) \ D(H) is dense in

D(H) equipped with the graph topology associated to the norm

kfkH = kfk+ kHfk:

Moreover the sesquilinear form de�ned on D(A) \D(H) by

< f; [H;A]g >=< Af;Hg > � < Hf;Ag >

extends continuously to D(H). Then one can de�ne the open set ~�A(H) of

the real point � for which there exist a constant a > 0, a compact operator

K in H such that

E(�)[H; iA]E(�) > aE(�) +K; (2.4)

for some open interval � containing �. Here-above E denotes the spectral

measure of H.

Proposition 1 The eigenvalues of H contained in ~�A(H) are all �nitely

degenerate and cannot accumulate in ~�A(H).

Then in particular the spectrum of H is purely continuous in

�A(H) := ~�A(H) n �p(H);

where �p(H) denotes the set of eigenvalues of H. One can prove easily that

�A(H) is in fact the set of all real point � for which the Mourre estimate

(2.4) holds with K = 0; i:e; there exist a constant a > 0 and an open interval

� 3 � such that

E(�)[H; iA]E(�) > aE(�); (2.5)

The following theorem shows that if H is A-regular then H has no singular

continuous spectrum in �A(H).

Theorem 5 Assume that eiAt leaves invariant the domain D(H) and that

H is A-regular. Then H is purely absolutely continuous in �A(H).
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Remarks.

1. This Theorem is proved in [1], where one can found another version of

this theorem in which the invariance of the domain under the action

of eiAt is replaced by the fact that H has a gap in its spectrum (which

is clearly inadequate for the model considered here). In [13] we have

eliminated this condition on the domain without asking the existence

of a spectral gap for H, but we ask H to be (locally) slightly more than

A�regular.

2. Let us mention that if H is of class C1(A) and that [H; iA] is a bounded

operator in H then eiAt leaves invariant the domain of H (see [8] for a

sharper statement).

3 Proof of Theorem 1

(i) By straightforward computations we get

[H0; iA] = F

where A = �id=dx is the translation generator. Then H0 is A-regular (in

fact is even of class C1(A) in the sense that the map of De�nition 1 is of

class C1), and

�A(H0) = R:

On the other hand

[V; iA] = �V 0(x);

which is obviously bounded in H if and only if V 0 is bounded as function.

To conclude the �rst part of Theorem 1 we have to prove that the Mourre

estimate holds locally on R, i.e. ~�A(H) = R: For this, and according to

E(�)[H; iA]E(�) = FE(�)� E(�)V 0(x)E(�); (3.6)

it is suÆcient to prove that E(�)V 0(x)E(�) is a compact operator in H.

But this property is a simple consequence of the following assertion which is
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proved by Bentosela and all in [3] (see also [5]). If a function G is uniformly

continuous and

lim
r�!1

sup
x2R

j1
r

Z x+r

x�r

G(y)dyj = 0 (3.7)

then E(�)G(x)E(�) is a compact operator in H. Clearly if V 0 is bounded

and uniformly continuous, and V is bounded (which are ensured by our

assumptions) then G = V 0 satis�es (3.7). Then �A(H) = R follows from

(3.6) and (3.7), and Proposition 1 �nishes the proof of part 1 of Theorem 1.

(ii)Now on let us prove the second part of Theorem 1. According to Theorem

5 and the last part of our proof we have only to show that H is A-regular and

that D(H) is invariant under the action of eiAt. According to the obvious

property

e�iA"V eiA" = V (x� "):

the operator V is A-regular if and only if the function V is smooth in Zyg-

mund's sense, which is exactly our assumption (1.2). Then the operator H

is A-regular.

The invariance of the domain D(H) under the action of eiAt follows from the

fact that the commutator [H; iA] = 1�V 0 is a bounded operator in H. This

�nishes the proof of Theorem 1.

4 Proof of Theorem 3

We shall prove that the self-adjoint operator

A = �i@x1

is strictly conjugate to H on R. Indeed, we have

[H0; iA] = F > 0

In particular H0 is of class C
1(A) and A is strictly conjugate to H0 on R,

i.e. �A(H0) = R. On the other hand, we have

e�i"AV ei"A = V (x1 � "; x0):
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Then it is clear that the regularity assumptions on the function V of Theorem

3 ensure that V is A-regular, and so H too (since H0 is). Moreover, the

commutator

[H; iA] = F � @x1V

is obviously bounded operator in H. And so the domain of H is invariant

under the action of eiAt. It is remaining to show that �A(H) = R. But this

property follows easily as follows:

[H; iA] = F � @x1V

� F � (@x1V )+(x)

� F � k(@x1V )+k1 > 0

which is a global and strict Mourre estimate. This �nishes the proof of the

second part of Theorem 3.

Remarks

1. Let us remark that when we replace the global condition k(@x1V )+k1 <

F by

lim sup
jxj�!1

(@x1V )+) < F

we will have only a local Mourre estimate:

E(�)[H; iA]E(�) � aE(�) +K;

where K is a compact operator, a = F � lim supjxj�!1(@x1V )+ >

0 and � is any compact interval. Which means that ~�A(H) = R.

Thus according to Proposition 1 there is only a discrete set of possible

eigenvalues of H and all these eigenvalues are �nitely degenerate.

2. We also mention the fact that our argument ignore completely if the

particle is relativistic or non-relativistic. More precisely, our proof still

valid for any operator of the form

H = h(�ir)� F � x1 + V (x)
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where h is a divergent continuous function and F; V are as in Theorem

1.2. An physical interesting situation is when h(x) =
p
1 + jxj2. In

such case H becomes

H =
p��+ 1� F � x1 + V (x);

which describes the motion of a charger relativistic particle in a con-

stant electric �eld. However, it is not clear whether or not Theorem 1

still valid. To do this, we have to describe the relative compact operator

V with respect to H0 = h(P )� F � x1.

5 Proof of Theorem 2 and 4

Let us start by proving that Theorem 4 follow easily from Theorem 2 com-

bined with Simon's result [15]. Assume that d = 2 and that

V (x1; x2) = V (x1) + V (x2):

Then by separation of variable we decompose H as follows

H = H1 
 1 + 1
H2 (5.8)

acting in L2(R) 
 L2(R), where

H1 = � d2

dx21
� x1 + V1(x1); (5.9)

H2 = � d2

dx22
+ V2(x2): (5.10)

Let � be a �xed real number. Theorem 2 tell us that there exist a real-valued

potential V1 of class C
1 such that V1 and V 0

1 are bounded and that � is an

eigenvalue of H1. On the other hand, let f�igi be a sequence of positive

numbers. Then there exist (cf. Simon [15]) a potential V2 of class C
1 such

that each �i is an eigenvalue ofH2. In particular, if the sequence f�igi is dense
in [0;1) (which we assume from now) then we get that [0;1) � �pp(H1).

But the decomposition (5.8) of H implies that the numbers �+ �i belong to
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the set �p(H) of the eigenvalues of H. It follows then [�;1) � �pp(H). On

the other hand, the potential V = V1+V2 is of class C
1 and @1V (x) = V 0

1(x1)

which is clearly bounded. Finally, an obvious induction allows us to do the

same construction for any dimension d.

Proof of Theorem 2.

(1) Without loss of generality one can assume that � = 0. We recall that

our goal is to construct a real-valued potential V of class C1(R) such that:

(i) V and V 0 are bounded and

(ii) there exist u 2 L2(R) solution of

�u00 � xu+ V u = 0:

Let us apply the Liouville transformation by setting for x � 1

� =
3

2
x
2

3 ; w(�) = x(�)
1

4u(x(�)):

One can show that (cf. [12]) the problem (ii) is equivalent to:

(ii)' there exist a function w 2 L2((1;1); �
�2

3 d�) solution of

�w00 + q(�)w = w; : (5.11)

The relation between q and V is

q(�) =
V (x(�))

x(�)
+

5

36�2

or equivalently

V (x) = x(q(�(x))� 5

36�(x)2
):

Moreover, it is not diÆcult to see that if q of class C1(1;1) such that for

each integer m � 0

q(m)(�) = O(��1); � �!1
then V will be of class C1(R), supp V � [1;1), and is bounded with its

derivative (i.e. (i) is satis�ed). Let us mention however that V 00(x) = O(
p
x)

as x!1:
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(2)We shall now construct q. For this let us apply the Pr�ufer transformation

by setting (
w = R cos�

w0 = R sin�;

Straightforward computations give the equations(
R
R

0
= 1

2
q sin 2�

�0 = �1� q cos2 �;
(5.12)

or equivalently (
R2 = C exp

R �
1
q sin 2�dt

�0 = �1� q cos2 �;
(5.13)

The potential q will have the form

q(x) =
X
k�1

qkj(
� � �k
�

)

where �k and qk are two adequate sequences we have to construct, while � > 0

will be choosed suÆciently small and j 2 C1((0; 1)); j(x) � 0;
R
j(x) = 1:

Assume that

q sin 2� � �1

2
q;

which is ensured if �(x) � 3�=4 on the interval [�k; �k +�]. Then (remark

that q = 0 on [�k +�; ; �k+1]Z 1

1

R2 d�

�2=3
= C

Z 1

1

[exp

Z �

1

q sin 2�dt]
d�

�2=3

� C1 + C2

X
k>0

Z �k+1

�k

exp(

Z �

1

q sin 2�dt)
d�

�2=3

� C1 + C2

X
k>0

Z �k+1

�k

exp(�1

2

Z �

1

qdt)
d�

�2=3

� C1 + C2

X
k>0

[�k+1 � �k] exp(�1

2

Z �k

1

qdt)

� C1 + C2

X
k>0

[�k+1 � �k] exp��

2

j=kX
j=1

qj:
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Then if (
�k+1 � �k = O(1)

qk =
C
�k

; (5.14)

where C is suÆciently large constant, then the right member of the last in-

equality is convergent, which means that w lies in L2((1;1); �
�2

3 d�): More-

over, by construction the potential q satis�es

q(m) = (1=�); as x �!1; 8m � 0:

Thus, it is suÆcient to construct by induction a sequence �k such that:

�(�k) = 3�=4(mod �) and q(�) = qkj(
���k
�

) on the interval [�k; �k +�];

and q(�) = 0 on the interval [�k +�; �k+1].

Assume that �k is constructed, and let us set q(�) = 0 for � > �k + �:

Integrating the equation (5.13) between �k +� < � we get

�(�) = �� + �k +�+ �(�k +�):

Let us choose �k+1 as the nearest point on the right of �k such that �(�k+1) =

3�=4(mod �). We also have,

�k+1 � �k = �(�k +�)� �(�k+1)�� = O(1):

Let us integrate (5.13) between �k and � � �k +� to get

j �(�)� �(�k) j� �+

Z �

�k

qdt � �+�qk:

For � suÆciently small we ensure the fact that �(�) � 3�=4(mod �) on

[�k; �k +�]: the construction is now completed.
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