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1 Introduction

The main purpose of this paper is to show that coupling of second order linear partial
differential equations (each yielding the structure of a harmonic space) can most easily be
considered as coupling within a balayage space. And then no additional constructions (as
e.g. in [CZ96]) are necessary, since the theory of balayage spaces as presented in [BH86]
can be directly applied. In particular, this covers the solution of the Dirichlet problem
for differential equations L"h = 0, n € N and L a linear (elliptic or parabolic) partial
differential operator of second order.

Coupling of n PDE’s as studied in [CZ96] is achieved by transitions between correspond-
ing points in n copies of the underlying domain, i.e., by very special transitions on the
direct sum of n domains. An additional advantage of our method is that it eventually al-
lows us to deal with perturbations given by arbitrary transition kernels within a balayage
space (which may or may not be a direct sum of several balayage spaces).

To illustrate our approach let us first discuss a very simple example: Consider two global
Kato measures fi1, iz > 0 on a Green domain D in R?, d > 1, (i.e., we have a Green
function Gp on D and G = [Gp(-,y) pj(dy) is a bounded continuous real function
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on D, j = 1,2) and assume that |G} ||«]|G |l < 1. Let U be a regular relatively
compact open subset of D and fix continuous real functions ¢, @2 on the boundary oU.
Suppose we want to solve the coupled Dirichlet problem

(11) Ahl == —h2/L1 on U, h,l = 1 on 8U,
(12) AhQ == _hll,LQ on U, h2 = 3 On ouU.

Note that e.g. the biharmonic problem
(1.3) A(Ah)=0o0onU, h=p ondU, —Ah=pon dU

is a special case (take p; = A4, pp = 0).

Let X be the topological sum of two copies X;, Xs of D, each equipped with the har-
monic structure given by the Laplacian and let 7 denote the canonical mapping between
these two copies (in section 5 we shall do this more formally). Let U; be the set U in X,
j =1,2. Taking s on X, h on U; UUs,, ¢ on dU; U dU, such that

(1.4) ulx; = wy, hlg, =hy, elov; = ¢; (j=1,2)
the equations (1.1) and (1.2) may be rewritten as a single equation
(1.5) Ah=—(hom)puon U UUy, h=¢ on (U, UU,).

For j = 1,2, let Gy, denote the Green function on U; and define a kernel Kﬁj by

Kty b= Gl = [ Gy (o200 de).
Then Ah = —(h o)y if and only if
(1.6) A(h—K{}j(how)):O onlUj, j=1,2

The idea is now the following: Given j € {1,2} and a regular subset V' of X, let Hy
denote the harmonic kernel of V' (i.e., Hy is a kernel on X such that, for every continuous

function ¢ on X, the function Hy is continuous on X, harmonic on V', and equal to ¢
on X \ V) and define a new kernel Hy, on X by

ﬁvgﬁ = Hv(,O + K‘L;((,O @) 7T).

The family of all Hy, V regular, V C X; or V C X,, yields a balayage space (X, W)
(this requires some proof, see Example 4.3) and then there are corresponding harmonic

kernels Hy for every open subset U of X. In particular, U; U U, is regular with respect
to (X, W) and then

h = E[UluUz(P

is the solution of (1.5). Indeed, clearly h = ¢ on 9(U; U Usy). And, for every j € {1,2},
we have Hy,uu, = Hy; Hy,uu,, hence

h = Hyh = Hyh+ Kfj (hor).

Since Hy, h is harmonic on Uj, this implies that A (h — Ky (ho 7r)) =0on Uj, ie., (1.6)
holds.



2 Balayage spaces

The notion of a balayage space is more general than that of a P—harmonic space as e.g.
given by linear elliptic and parabolic partial differential equations of second order. In
addition, it covers Riesz potentials as well as Markov chains on discrete spaces. There are
various ways of describing a balayage space: By its cone W of positive hyperharmonic
functions, by a family of harmonic kernels, by a corresponding semigroup, by an associated
Hunt process (see [BH86, Theorem IV.8.1] or the survey article [Han87]). For our purpose
the description using harmonic kernels is very appropriate.

We begin by introducing some notation: Let X be a locally compact space with count-
able base. For every open set U in X, let B(U) denote the set of all numerical Borel
measurable functions on U. Further, C(U) will denote the space of all real continuous
functions on U and K(U) (Cy(U) resp.) the set of all functions in C(U) having compact
support (vanishing at infinity) with respect to U. Occasionally, functions on U will be
identified with functions on X which are zero on U°. Finally, given any set A of functions
let A, (AT resp.) denote the set of all functions in A which are bounded (positive resp.)

Let U be a base of relatively compact open subsets of X and, for every U € U, let
Hy be a kernel on X such that Hy(z,-) = ¢, for every z € U® and Hyly = 0. It will
be convenient to assume that U is stable with respect to finite intersections (by [BHS86,
Remark VII.3.2.4] this is no restriction of generality). Define

(2.1) W:={v|v:X —[0,00] Ls.c., Hyv < v for every U € U}
and, for every numerical function f > 0 on X, let
Ry:=inf{lv e W : v> f}.

A function s € C*(X) is called strongly (W-)superharmonic if, for every U € U, Hys < s
on U.

Then (Hy)uey is a family of (regular) harmonic kernels and (X, V) is a balayage space
provided the following holds (where U,V € U):

H,) Given z € X, limy sy Hup(z) = ¢(z) for all p € K(X) or Ry, is Ls.c. at x.

Hé HVHU:HU lfVCU

(
(
(H3) For every f € B,(X) with compact support, the function Hy f is continuous on U.
(H}) For every ¢ € K(X), the function Hy g is continuous on U.

(

)
)
)
HY) There exists a strongly superharmonic function s € C(X).

Remarks 2.1. 1. It will be clear to the specialist how to proceed if we would not assume
having a base of regular sets, i.e., if instead of (H}) we would only suppose that the
following property (Hy) holds: For every x € U there exists a l.s.c. function w > 0 on U
such that w(r) < oo, Hyw < w if V C U, and limgw = oo for every non-regular
ultrafilter F on U (see [BH86, p. 94]).

Moreover, properties (H;) — (H%) imply the following property (Hj): W is linearly
separating (i.e., for z,y € X, x # y, and A € R, there exists v € W such that v(z) #
Av(y)) and there exists a strictly positive function s € WNC(X). Indeed, let s € CT(X)
be strongly superharmonic. Then of course s > 0 and s € W. Furthermore, Hys € W for
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every U € U: Because of (Hj) the function Hys is Ls.c. Given V' € U, we have to show
that Hy Hys < Hys. Since Hys < s and Hys < s, we obtain first that

HvHUS S HvS S S = HUS on U°.
In addition, Hy Hys = Hys on V. Since (UN V)¢ =UU V¢ we conclude that
HyHys = HynyHy Hys < Hynv Hys = Hys.

It is now easily seen that W is linearly separating: Fix z,y € X, x # y. Choose U € U
such that x € U, y ¢ U. For every A € R, s(z) # As(y) or Hys(x) # As(y) = AHys(y).
We finally note that (H{) holds for every balayage space by [BH86, pp.17,118].
2. It will be useful to know that W as defined by (2.1) does not change if we replace U
by a smaller base U’ (see [BH86, Remark I11.6.13]).

As for harmonic spaces continuous potentials play an important role. The convex cone
P(X) of all continuous real potentials can be defined and characterized in several ways:

PX)={peWnCX): Kconigfct CXRlKCp =0}
={peWwWncCX): g € Co(X) for some g e WNC(X)}
={peWnC(X): 0<g<p geH"(X) = g=0}

where HT(X) denotes the set of all positive harmonic functions on X i.e.,
HY(X)={geC"(X): Hyg = g for every U € U}.
Moreover, we have a Riesz decomposition
WX)NC(X)=H"(X)d P(X).

A function f on X is called P-bounded if |f| < p for some p € P(X).
It is easily seen that we may restrict the balayage space (X, V) on any open subset Y
of X defining kernels

H()]/(.’L‘,) :HU(:I“J)|Y (ZL‘EUGZ/{,UCY)

Note that the corresponding cone Wy contains W|y.

It is trivial that finite and countable direct sums of balayage spaces are balayage spaces
as well:

Let (X;,W;), i € I C N, be balayage spaces. If X = )"
sum of all X;, 7 € I, and

ier i denotes the topological

W:ZWZ- = {U‘U:X — [0, 00], v|x, € W; for every i € I}
il
(we identify v; € W; with a function on X taking v; = 0 on X \ X;), then (X, W) is a
balayage space. To see this it suffices to take U = |J,.;U; (U; being a base a regular sets
for the balayage space (X;, W;)) and to extend the harmonic kernels Hy;, U € U;, defining
Hy(z,:)=¢, forallz € X \ X,.
Let us note that of course, for every i € I, the restriction of (X, W) on Xj is (X;, W)).
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In the following (X, W) will always denote a balayage space associated with a family
(Hy)veu of regular harmonic kernels. Moreover, we fix a potential kernel Ky for (X, W),
i.e., Kx is a kernel such that

(2.2) KxfeP(X)NH(X \supp(f)) for f e B} (X) with compact support.

A general minimum principle implies that v > K f whenever v € W and f € B (X) such
that v > K f on supp(f) (see [BH86, ...]).

Defining
KUI:KX—HUKX (UEZ/{)

we obtain a family (Ky)yey of kernels such that
(23) KU(Bb(X)) C C()(U) and KU = KV + HVKU
for all U,V € U with V' C U (this is an immediate consequence of (H}), (Hs), and (H})).

Remarks 2.2. 1. If we have a Green function Gx for X, then Kxf = GQ‘ for some
measure z > 0 on X and Kyf = GJF where Gy(-,y) = Gx(-y) — HyGx(-,y) for
ye X,U el.

2. For every p € P(X), there exists a unique potential kernel K% such that K31 = p
(see [BHS86, p.75]). It is called the potential kernel associated with p.

3. If Kx is a potential kernel and ¢ € BT (X) is locally bounded, then f — Kx(pf)
obviously defines a potential kernel.

4. Conversely, for every potential kernel Ky, there exists p € P(X) and a strictly
positive function ¢ € C*(X) such that

Kxf=K%(of) for every f € BT(X).

Indeed, fix a sequence (¢,,) in KT (X) such that X = |J>,{¢» > 0}. Since p, := Kxi,, €
P(X), we may choose reals o, > 0, n € N, such that

)= Zanwn eCH(X), p:== Zanpn € P(X).
n=1 n=1

Obviously, Kx1 = p and hence
K% f=Kxf) for every f € BT (X).

So ¢ := 1/1 has the desired properties.

5. If Kx is a potential kernel on X, then every Ky, U € U, is a potential kernel on U
(this follows easily from the definition of Ky). For the converse, i.e., for the construction
of Kx from a compatible family of potential kernels (Ky)pey see the Appendix.

Extending the notion used in [HH88| for harmonic spaces let us say that the balayage
space (X, W) is parabolic, if for every non-empty compact subset C' of X there exists
x € C such that liminf,_,, R;_(y) = 0. For equivalent properties see Theorem 10.2.
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3 First coupling within a balayage space

We fix a kernel 7' on X and assume that, for some sequence (W) of open sets increasing
to X,

(31) Tan < 00, Kx(lwnlen) € C(X) (n € ]N)
Such a kernel 7" will be called an admissible transition kernel.

Remarks 3.1. 1. If the sets W, are relatively compact and the functions T1ly, are
bounded on W, then (3.1) is already a consequence of (2.2). So every kernel T on X
such that T'¢ is locally bounded for every ¢ € K(X) is an admissible transition kernel.

2. It is easily seen that (3.1) implies that

(3.2) Ky(Tf)eCy(U) forallU €U and f € By(X) with compact support.

Indeed, choosing n € N such that U C W, and supp(f) C W, the lower semi-continuity
of the functions Kx (1w, Tf*), Kx (1w, T(||f|lclw, — fF)) and the continuity of the sum
I flloo K x (Lw, T'(1yy, ) implies that the functions Kx (1w, T f%) are continuous. Thus by

(2.3)
Ky(Tf) = Kx(Tf) — HyKx(Tf) = Kx(1w,Tf) — HyKx(1w,Tf) € Co(U)

(the harmonicity of Kx(LweT f) on Wy implies that Hy Kx (1weT f) = Kx (1w T f)).
3. Using lifting of potentials (see Remark 2.1.6) it can be shown that, conversely, (3.2)
implies (3.1).

Let UT be the set of all U € U such that T is a transition from U to the complement of
U, ie.,

U'={U el :1,T1y = 0}.

In this section we shall assume that

(3.3) U" is a base of X

(in Section 9 we shall deal with the general case by approximation). Defining
K} = KyT, H}:=Hy+K} (Ueu")

and
W ={v|v:X —[0,00] Ls.c., Hiv < v for every U € U}

we then know already by Remark 2.1.2 that
whcw.

Let us check that most of the axioms of a family of harmonic kernels are satisfied by
(HE)peyr without any further assumption: Fix U,V € UT, V C U. Then

(3.4) Ky = KyTly = Ky (1yT1y) = 0,

hence (taking V' = U)
H 1y = Hyly = 0.
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Let f € By(X) with compact support. Then
(3.5) Hff=Hyf=f onU"

showing that HY (z,-) = ¢, for every z € U®. Since K[ f € Cy(U), we obtain by (Hjz) that
H f is continuous on U. And if f € K(X), then H};f € K(X) by (H}). Thus the family
(HE)peyr satisfies (Hs) and (HY).

Moreover, by (3.4) and (3.5), KLHL f = KL(1yHE f) = KL(1yef) = KT f, ie.,

(3.6) KIHE = KT,
Since HyHy = Hy by (Hz), we obtain by (3.6) and (2.3) that
H{H} = Hy(Hy + K})) + KLH}, = H H; + Hy K, + K\, = Hy + K, = H},.

So (HE)peyr satisfies (Hy) as well.
Given z € U and ¢ € KT(X), we obtain by (2.3) that limy, ;3 KLp(z) = 0, since
limy (o) Hy Ky (T¢)(x) = Ky (Tp)(x). Hence

lim HEo(x) = o(z if lim H z) = o(x).
im, vie(z) = p(x) Jim, vip(z) = o()

Moreover, defining

re=Ry,,, r’ .= RT

1., = inf{v € W' w(z) > 1}

we have r" > r, since W' C W. Hence liminf, ,, r"(y) > liminf, ,, r(y) = 1, if r is Ls.c.
at . And then 7 is L.s.c. at x provided there exists v € W' with v(z) < oo (since then
v/v(z) >rT, 1> rT(x)).

Thus we have the following result:

Theorem 3.2. IfUT is a base of X, the following properties are equivalent:
1. (X, WT) is a balayage space (i.e., (HE)yeyr is a family of harmonic kernels on X).
2. There erists a strongly W'-superharmonic function s € CT(X).

Remark 3.3. Let T' be a kernel on X such that T' < T, U" is a base of X, and (X, W'
is a balayage space. Then T' is admissible and every W -strongly superharmonic function
is obviously W” -strongly superharmonic. So Theorem 8.2 implies that (X, WT') is a
balayage space as well.

Corollary 3.4. Suppose that U is a base of X and that there exist s € W andu € BT (X)
such that

vi=s+KxuelC(X), Tv<u

and, for every U € UT,
{Hys < s} U{Ky(u—Tv) >0} =U.

Then (X, W) is a balayage space and v is strongly W -superharmonic.



Remarks 3.5. 1. For a version not assuming that U’ is a base see Theorem 9.3.

2. If Kx = K% for some strictly superharmonic p € P, then TKxu < u implies that
taking s = 0 we have Ky(u—Tv) >0 on U € U.

3. For some applications (see e.g. Corollary 4.9) it will be useful to keep in mind
that, given any strictly positive locally bounded function ¢ € B(X), we may replace the
potential kernel Kx by the potential kernel f — Kx(¢f) and the transition kernel T' by
the transition kernel f — T(f)/¢ without changing (X, WT).

Proof of Corollary 3.4. 1t suffices to note that, for every U € U7,
v— Hfv=v— Hyv— Ky(Tv) =s— Hys + Ky(u—Tv) >0 on U.
O

Corollary 3.6. Suppose that UT is a base of X, Kx is associated with p € P(X), and
that for some s € WNC(X) the function v := p—+s is strongly superharmonic and Tv < 1.
Then (X, WT) is a balayage space and v is strongly WY -superharmonic.

Proof. Fix U € U and x € U. By assumption, Hyv(z) < v(z). Suppose that Hys(z) =
s(x). Then Hyp(z) < p(z), ie., Kyl(z) > 0. Since 1 — Twv > 0, this implies that
Ky(1 —Tw)(xz) > 0. So the statement follows from Corollary 3.4. O

If (X,WT") is a balayage space, then, for every U € U”, H} is the kernel solving the
Dirichlet problem for U with respect to (X, W”). We may, however, solve the Dirichlet
problem with respect to (X, WT) for any U € U (if we wanted to we could even solve
it for any open set U in X, see [BH86, VIL.2]). This leads to the larger family (HE)pey
where H/; for arbitrary U € U can be characterized in the following way:

Proposition 3.7. Suppose that (X, W) is a balayage space. Then, for every U € U, the
harmonic kernel HE for U with respect to (X, WT) has the following property:
For every p € KT(X), the function HE ¢ is the unique function h € K*(X) such that

h — KEh = Hy.

Beweis. 1. Fix ¢ € K*(X) and define h := H;p. Then h € K*(X) and hence K h €
CO(U) So
g:=h—Kfhe K(X), g=¢ onU"

For every V € UT with V C U,
h=Hlh = Hyh+ K{h,

hence
g=h—KIh— HyK\h = Hy(h — KELh)

is harmonic on V. Thus ¢ is harmonic on U, g = Hy .
2. Now let h be any function in £ (X) such that

h— K;h = Hy.
Then h = ¢ on U® and, for every V € U with V C U,
H{h = Hyh+ K\'h = HyHyp + HyKih + KFh = Hyp + K;h = h.

Thus h = HE . O



Remark 3.8. Assuming that (X, W") is a balayage space we may show in the same way
that, for every p € K(X), HE p is the unique function h € K(X) such that KE|h| € Co(U)
and h — KEh = Hy.

Proposition 3.9. Let v be a positive numerical function on X. Then v € W' if and
only if there exists a function w € W such that v = K¥v + w.

Proof. Suppose first that w € W and v = K¥v +w. Then v is ls.c. Fix U € UT and
x € U. We have to show that Hlv(x) < v(z). To that end we may assume that v(z) < oo
and hence HyK%v(z) < K¥v(x) < v(x) < oo. Then

Hlv(z) = Hyv(z) + Klv(z) = Hpv(z) — Hy K v(z) + Kiv(z)
= Hyw(z) + Kiv(z) < w(z) + Kkv(z) = v(z).

Thus v € WT.

Suppose now conversely that v € W!. Then v € W, so v is finely continuous. Let
us choose an increasing sequence (W,,) of relatively compact open sets satisfying (3.1).
Defining

©on = 1w, T (1w, inf(v, n)) (n € N)

we then have Ky, € P(X) for every n € N and
Kxon T Kxv, Kypn T Kjv
for every U € UT. Define
wy, =v — Kxo, (n € N).
For every U € U7,
Hyw, + Kxp, = Hyv + Ky, < Hpv + Kfv = HEv < v,

i.e., Hyw, < w,. Since w, is L.s.c. and w,, > —Kxy,, we therefore obtain that w, € W.
The sequence (w,,) is decreasing and the function w defined by

w(x) = tliminfinfw,(y), =€ X,

Y—T n
is contained in W. Since the functions v and K%v are finely continuous and obviously

v=KLv+ igfwn,

we finally obtain that v = K¥v + w. O

4 First applications on direct sums

In this section we shall first consider general transitions between spaces forming a di-
rect sum and then study the important case of direct sums with the same underlying
topological space Y and transition between corresponding points in the copies of Y.

Let I ={1,2,...,n},n € N, or I =N and let (X,W) be the direct sum of balayage
spaces (X;,W;), i € I C N (see Section 2). Let 7" be an admissible kernel on X satisfying

(4.1) T(x,X;)=0 foreveryieclandzxe€ X;



and let Ky be the potential kernel associated with a potential p € P(X). Then UT =
U = U;c; Ui and we know by Theorem 3.2 that (X, WT) is a balayage space provided
there exists a WT-strongly superharmonic function s € C*(X). This may by guaranteed
by the existence of a function u on the index set I which is strongly superharmonic with
respect to a suitably chosen kernel P.

Let pp € P(X) such that p := p + py is strongly superharmonic and define kernels P
and P on I by

P(i,{j}) = [1xT(1x;p)|lc = sup /X_p(Z)T(%dZ), P(i,{j}) = |Lx.T(Lx,;5) ||

zeX;

for i,j € I where of course, P(i,{i}) = P(i,{i}) = 0 by (4.1). Then Theorem 3.2 leads
to the following result:

Theorem 4.1. If there exists a positive real function uw on I such that Pu < u, then
(X, WT) is a balayage space.

Remark 4.2. [t is sufficient to know that Pu < u if

a) p is strongly superharmonic
or

b) I is finite and there exists w € Wy such that w > 0 and Tw is bounded.

Indeed, in the first case we may take py = 0 so that P = P. In the second case, there
exists € > 0 such that Pu + en||Tw||s||ulle < u (n being the number of elements in I)
and we may choose a strongly YW-superharmonic function py € P(X) with pg < w. Then
p=p+po is strongly superharmonic and Pu < Pu + en||Tw|so||tt/|0s < u.

Proof of Theorem 4.1. We define a function ¢ € P(X) by

q= Z 1Xju(j)ﬁ‘
jer
Fix i € I and U € U;. By definition of P, T(1x;u(j)p) < P(i,{j})u(j) on U. Moreover,
Pu(i) < u(i) and Hyp < p on U. Therefore

Kjq = Z Ky (T (1x,u(4)p)) < Pu(i) Kyl = Pu(i)(p — Hup)
< Pu(i)(p— Hup) <u(i)(p— Hup) =q¢— Hyg  on U.

So q is strongly W*-superharmonic and the proof is finished by an application of Theo-
rem 3.2. U

Example 4.3. Let us consider the example given in the introduction. There we have
I = {1,2} and T(z,-) = &x(s), hence P(i,{j}) = &;||G’ |l so that by assumption
P(1,{2})P(2,{1}) < 1. If P(1,{2}) > 0, then Pu < uif we take u(1) = 1 and P(2,{1}) <
u(2) < P(1,{2})~'. Similarly, if P(2,{1}) > 0. The case P(1,{2}) = P(2,{1}) = 0
(which is of no interest, since we have no coupling at all) can be dealt with taking v = 1.
Thus (X, WT) is a balayage space by Theorem 4.1 and Remark 4.2.

Corollary 4.4. Suppose that I = {1,...,n} and that T'(x,X;) = 0 for all x € X; and
1 < j <i<mn. Moreover, assume that p > 0 and Tp is bounded. Then (X, WT) is a
balayage space.
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Proof. In view of Theorem 4.1 and Remark 4.2 it suffices to note that we may easily find
a positive real function v on I satisfying Pu < u: Having P(i,{j}) = 0for 1 < j <
and P(i,{j}) < oo for 1 < i < j < n we may take u(n) = 1 and choose u(i) >
> i P, {3 Hu(j) recursively for i =n —1,n—2,..., 1. O

Remark 4.5. Using the results of [Bou84] it can easily be seen that (strong) biharmonic
spaces as introduced by [Smy75, Smy76] (or, more generally, polyharmonic spaces) are a
special case. They are balayage spaces if interpreted in the right way.

Let us now suppose that all X;, ¢ € I, are copies of a space Y and that we have
transitions only between corresponding points in these copies: Let W;, ¢ € I, be convex
cones of l.s.c. positive numerical functions on Y such that every (Y,)V;) is a balayage
space. For every ¢ € I, let p; be a strongly superharmonic continuous real potential for
(Y, W;) and let KJ;, denote the corresponding potential kernel. The potentials p; define
a strongly superharmonic continuous real potential p for the direct sum (X, W) and the
restriction of K% on the copy of Y corresponding to (Y, W) is the kernel K7),. Let
gij € BT(Y') describe the transition from points in the i-th copy of Y to the j- th Copy of
Y, i.e., identifying the i-th copy of Y with Y x {i} we have

ng %)) (yeY,iel)

jel

where of course g;; = 0 by (4.1). We assume that the functions K7}, (1¢gi;) are continuous
and real for every compact subset C' of Y so that 7" is admissible.

Then Corollary 3.4 provides the following results (for the case g; # 0 see the end of
Section 8):

Theorem 4.6. If there exist functions u; € BT (Y') such that Ky, u; € C(Y) and

Y
ZginV\]}juj < u;

jer
for every i € I, then (X, WT) is a balayage space.

Corollary 4.7. Assume that W; = Wy and p; = py for every i € I. Then (X, W") is a
balayage space if there exists a strictly positive function v € BT (Y) and strictly positive
reals b; such that K}, w € C(Y') and, for all i € I,

Jjel

Remark 4.8. Suppose that I = {1,...,n}, a;j = ||gijllc < 00 for all i,j and denote
A = (a;;). Assume that u € BY(Y') and a > 0 such that

ol u < w.
Then (4.2) is satisfied if there exists b € R™, b > 0, such that
Ab < ab

which in turn holds if and only if the spectral radius of A is strictly less than «.
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Corollary 4.9. Assume that W; = W, and p; = py for all i € I and that there exists a
strictly positive bounded function in Wi. Then (X, WT) is a balayage space if (Y, W) is
parabolic and the function Kl%l (max;e; Zjel gij) is continuous and bounded.

Proof. We choose ¢ € Cy(Y') such that ¢y > 0 and K7Jy;, o € Cp(Y), and define

Y=o+ D;lgxze;gij, Gij = gij/¢ (i, €1)
j

so that ng gij <1 for every i € I. Moreover, let

) :Zgiﬁ(y,j); K\f = Ky (of) (f € BR(Y)).

Jjel

Then K1 is a potential kernel on (Y, W) such that Kl € Cy(Y). For the corresponding
kernel Kx on X we obviously have KxT' = KxT. Thus (X,W") is not changed if we
replace Ky by Ky and T by T.

Our assumption on W, implies that there exists a strictly positive bounded function
s € W, which is continuous. By Theorem 10.2 and Lemma 10.3, I — K is invertible and

= (I - Ky) 's € Bf(X).

Then v = Kyu + s € Cy(X) and, for all y € Y and i € I,

> Gily) < Kyu(y) = uly) — s(y) < uly),

jEI
By Theorem 4.6 we conclude that (X, WT) is a balayage space. O
Proposition 3.7 can be expressed as follows:

Proposition 4.10. Let I = {1,...,n}. Suppose that (X, W) is a balayage space and
that U is a relatively compact open subset of Y which is W;-reqular for every 1 < i < n.

Then, for any choice of functions p1,...,¢0, € K(Y), there exist unique functions
hi,...,hy € K(Y) such that, for every 1 < i <n,

h; — ZK% (gijh;) is Wi-harmonic on U, h; =p; on U°.

jel

Moreover, the functions hy, ..., h, are positive, if the functions @1, ..., p, are positive.

5 Coupling of partial differential equations

Let D be a domain in R%, d > 1, let n € N, and let L;, 1 < i < n, be second order
(elliptic or parabolic) linear partial differential operators on D leading to harmonic spaces
(D,Hy,). (For the definition of harmonic spaces and various sufficient conditions for
the differential operators the reader might consult [Her62, CC72, BH86, Kro88, Her68,
Bon70]). Moreover, we assume that, for every 1 < i < n, we have a base of L;-regular
sets for D, a Green function Gy for (X,Hy,), and a Radon measure p; > 0 on D such
that G’ € Cy(D) and (Gp,){? > 0 on V for every (L;-regular) open subset V' of D.

12



We want to study the coupled system

J#i

where ¢;; € BT(D) such that Gleg”“i € C(D) for every compact subset A of D (in
Section 8 we shall consider more general systems L;h; + Y7, gizhjp; = 0). This will be
possible by introducing associated transitions on the direct sum of the spaces (D, Hy,).
By now it should be intuitively clear how to do it. To get it done in a formally correct
way we proceed as follows: For every 1 < i < n, let

X; =D x {i}

and let 7; denote the canonical projection from X; on D. Then the direct sum (X, H)
of the spaces (X;,Hp, om), 1 < i < n, is a harmonic space (with the subspace X =
Dx{1,2,...,n} of R?x N). (If W; denotes the convex cone of all positive hyperharmonic
functions for (X;, Hy,om;) and W the convex cone of all positive hyperharmonic functions
for (X, ), then of course (X, W) is the direct sum of (X1, Wy),..., (Xn, Wh).)

Defining p: X — R by

pXi:G%iioﬂ_ia 1§Z§n7

we obtain a continuous real potential on X with a corresponding potential kernel K.
Finally, we define an admissible transition kernel 7" on X by

T((x,i),-) = Zgij € (@.5) (x € D,1<i<n).
J#i
Suppose for a moment that there exists a strongly W!-superharmonic function s €
CH(X), i.e., that (X, W) is a balayage space. Fix a relatively compact subset U of D
and functions ¢y, ..., p, € K(D). For simplicity suppose that U is L;-regular for every

1 < i < n (again it will be clear for the specialist how to proceed if this does not hold).
Then

U= JU x{i}
i=1
is a regular subset of X. Defining
o(z,i) == piz) (teD,1<i<n)

we obtain a function ¢ € K(X). By Proposition 3.7, there is a unique function h € IC(X)
such that
h—KEh = Hgop.

Of course, h|; depends only on ¢|,, since T(U) C U and H e depends only on ¢|,.
Define
hi:=hom (1<i<n)
and fix 1 < i < n. Clearly, h; € K(D) and h; = ¢; on D\ U, since h = ¢ on X \ U.
Furthermore, L;((Hg) o m;") = 0 on U, since Hgp € H(U) and hence (Hgp) om;' €
fHLl(U) And
(KEh)om ' = Kg(Th)om, ' = (Gy,)Temi m

13



where, for every z € D, by definition of T’
(Th) om; M (z) = Th(z,i) =Y _ gijh(z,5) =Y _ gijh;(x).
j#i J#

Thus

0= Li((Hgp) om; ') = Li[(h — KLh) o m; '] = Lih; + Zgz’jhjﬂj

J#

and we obtain the following consequence of Proposition 3.7 (see Section 4, Theorem 5.4,
and Corollary 5.6 for conditions implying that (X, WT) is a balayage space):

Theorem 5.1. Suppose that (X, WT) is a balayage space and let U be a relatively compact
subset of D such that U s L;-reqular for every 1 < i < n. Then, for every choice of
functions 1, ..., p, € C(OU), there exist unique continuous functions hi,...,h, on U
such that, for every 1 <1 <n,

Lzhz + Zhjgwuz =0 on U, hl = ¥; on OU.
J#
Further, the functions hy, ..., h, are positive if the functions p1,..., @, are positive.
From Corollary 4.4 we get the following:

Corollary 5.2. Let U be a relatively compact subset of D such that U s L;-reqular for
every 1 < 1 < n. Then, for every choice of functions @1, ..., ¢, € C(OU), there exist
unique continuous functions hy, ..., h, on U such that, for every 1 <i < n,

n
Llhl + Z hjgij,ui =0 on U, hl = ¥; on OU.
j=it+1
And the functions h;, ..., h, are positive if the functions p1,...,p, are positive.
A very special case is the situation where all operators L; are equal and g;;jt; = 0;41

Corollary 5.3. Let D be a bounded domain in R%, d > 1, and let L be a second order
linear partial differential operator on D leading to a harmonic space (D, Hy) with Green
function Gp such that G} is continuous and bounded. Let U be a relatively compact
(L—)regular subset of D, n € N, and ¢1,...,¢, € C(OU). Then there exists a unique
function h € C(U) such that Lh, L*h,...,L" *h € C(U),

L"h=0 onU, lim(—=L)" *h(z)=pi(z) foreveryl <i<n and for all z € OU.
T—rz

And h,—Lh,L?... (—L)" ‘h are positive, if @1, ..., o, are positive.

Moreover, Theorem 4.6 implies the following result involving p;-eigenfunctions for the
operators L;:

Theorem 5.4. Suppose that there exist strictly positive Py, (D)-bounded functions u; €
Cy(D) and strictly positive real numbers oy, B3, 1,5 € {1,...,n}, such that

Liuw; + cuip; = 0,
and

u; < Gijug, Zﬁijgij/aj <L
j#i

Then (X, WT) is a balayage space.
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Remark 5.5. If there exists an L;-superharmonic function s; > 1 on D, then every
function u € Cy(D) is Py, (D)-bounded.

Proof of Theorem 5.4. For every 1 <1 < n,
aZGz“’ = Uy,

since u; — oG is Pr,(D)-bounded and L;-harmonic on D. Therefore

wip; Uj ﬁij
ZgijGL]j ' = Zgij; < Zgz’ja_jui < U

j#i j#i I g
for every 1 <i < n. Thus (X, W") is a balayage space by Theorem 4.6. O
Corollary 5.6. Suppose that Ly = --- = L, =: L. Then (X, W) is a balayage space if
one of the following conditions is satisfied:
1. py =+ = py =: u and there exist o > 0, a strictly positive Pr(D)-bounded function
u € Cp(D), and strictly positive real numbers by, . .., b, such that

Lu+aup=0 and Zgijbj < ab; for every 1 < i < mn.
J#
2. (D,Hy) is parabolic and the potentials G3°", i,j € {1,...,n}, are continuous and

bounded.

Remark 5.7. Note that the harmonic space associated with the heat equation or a similar
parabolic equation is parabolic. Moreover, the last property clearly holds if the functions
gij are bounded.

Proof of Corollary 5.6. By Theorem 5.4, (1) implies that (X, WT) is a balayage space
(take U; = blu)

So suppose that (2) holds. Since of course g;;i; = §i;(p1 + -+ - + 1) for some Borel
function 0 < g;; < g¢;5, we may assume without loss of generality that py = --- = p,.
Thus Corollary 4.9 implies that (X, WT) is a balayage space. O

6 Perturbation of balayage spaces

In order to get further possibilities for transitions let us briefly discuss perturbation of
(X, W). To that end we fix a real function k£ € B(X) such that, for every U € U,

Kylk| € Co(U).

Such a function will be called a Kato function (with respect to Kx). Let M+ denote the

multiplication operators
Mz - f— kX f

so that Ky M+ are the potential kernels associated with Kyk*.

Lemma 6.1. For every U € U, the mapping I + Ky M+ is a bijection on By(U) and
0<(I+ KyMy+) 's<s

for every s € 8§ (U). Moreover, for every s € S (U), (I + KyM+)~'s >0 on {s > 0}.
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Proof. As for harmonic spaces (see [BHH87, p. 104], or [HM90, p. 558]). O
In particular, for every U € U, the operator
Ly = (I + Ky M) Ky M-
defines a kernel. As for harmonic spaces we obtain (see [HM90]):

Lemma 6.2. For every U € U, the following statements are equivalent:

1. The operator I— Ly is invertible on B, (U) and (I—Ly)~' f > 0 for every f € B (U).

2. Y. Lyl is bounded.

n=1

If (2) holds, then U is called k-bounded and

(I+EKyMy)™ =Y Ly(I+ KyMg+) ™
n=1
Theorem 6.3. ((I + KyM+)""Hy) oy is a family of harmonic kernels on X,

More generally:

Theorem 6.4. Suppose that there exist s € W and u € BT (X) such that
v:i=s+ Kyu € C(X), 0 <u+ kv,

and, for every U € U, {Hys < s} U{Ky(u+ kv) > 0} = U. Then every U € U s
k-bounded and defining

(6.1) Hy:= (I + KyMy) *Hy  (UclU)
and
(6.2) W= {v|v:X —[0,00] Ls.c., Hyv < v for every U € U}

the family (Hy)uey is a family of harmonic kernels on X, the pair (X, W) is a balayage
space, and v is strongly VW-superharmonic.

Proof. Given U € U, our assumptions imply that

(I+KUMk+)(U—LUU) = U+KUMk+U—KUMk—U
= v+ Ky(kv) =s+ HyKxu+ Ky(u + kv)

is a strictly positive function in S, (U) and hence v — Lyv > 0 on U by Lemma 6.1. In

particular, v > 0 on X. Moreover, Lyv € Cy(U) and infv(U) > 0. So the function
fi=v—Lyv

satisfies inf f(U) > 0. Since by induction

3

S
I

L f+ Ljv

3
Il
o
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for every m € N, we know that Yoo o Lt f <w. Thus U is k-bounded and we may define
a kernel Hy by

(6.3) Hy = (I + KyMy) 'Hy =Y L{(I + Ky M) " Hy.

n=0

Since
(I + KyMy)(v— Hyv) = v+ Ky(kv) — Hyv = (s — Hys) + Ky (u + kv) =: t
is a strictly positive function in & (U), we obtain by (6.3) and by Lemma 6.1 that
v — Hyv = (I + KyMy) 't > (I + Ky M+ )~ 't > 0.

In particular, ~(lflU)Ueu satisfies (Hj).
Obviously, Hyly = 0 and Hy(z,:) = ¢, for all U € U and z € U°. If f € B,(X) with
compact support, then Hy f € B,(X), hence Ky(kHy f) € Co(U). So the equality

Hyf + Ky(kHyf) = Hy f

immediately implies that (Hy)yey satisfies (Hs) and (H}). Applied to functions in K(X)
we have for all U,V e U with V C U

(I+ KyMy)Hy = Hy+ (Ky — HyKy)MyHy
= Hy - HyKyMyHy = Hy(Hy — KyMHy) = Hy Hy,
ie., } . o
HU == (I + Kka)_leHU == HVHU-

So (Hy)yey satisfies (H}).
To show that (H;) holds let us fix € X and assume first that limy ,y Hyp(z) = ¢(2)
for every ¢ € KC(X). Let W be a neighborhood of x. Then, for every U € U with U C W,

Ky (|k|Hov) < Ky([klv) < sup(v(W)) Ky |k|
and limy (5} [|[Kuk|||c = 0. So we conclude that, for every ¢ € K(X),

lim H z)= lim H z) = p(x).
lim Fop(a) = lim Huplz) = olz)

By [BHS86, Proposition II1.2.7], it remains to consider the case where z is (W-)finely
isolated. Let -
7 =inf{w € W: w(z) > 1}.

By Choquet’s lemma, there exist w,, € W, such that w,(z) > 1 for every n € N and

o ——

= infw,.

=

Of course we may assume without loss of generality that w, 1 < w, < v/v(z) for every
n € N. Define
Sn 1= wy, + Ky (kT wy,) (n € N).

Then s, is L.s.c. and, for every V € Y with V C U,

Hvsn = Han + Kv(kﬁvwn) + HvKU(k+wn)
< w,+ Kv(k+wn) + HvKU(k+wn) = Sn,
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ie., s, € *HT(U). Defining s := infs,, we hence know that ' = 5 (see [BHS86, p.58]).
Let w = infw,. Then s = w + Ky (kTw) and the continuity of Ky (kTw) implies that

Wt + Ky(ktw) = 8" =5 = 0 + Ky(kTw),
i.e., w' = w. Since x is finely isolated, we conclude that

F(z) = w(z) = o' (z) = f—l;glinfw(y) =w(zr)=1=r7(x).

Thus 7 is L.s.c. at x. This finishes the proof of Theorem 6.4. O

Theorem 6.3 is a special case: If £ > 0, then we may take u = 0 and any strongly
superharmonic s € C*(X). But of course we may as well take the preceding proof and
omit its first part noting that, by Lemma 6.1, the operators (I + KyMy) *Hy, U € U,
yield kernels Hy and that W c W if k > 0.

Moreover we shall need the following:

Proposition 6.5. If every U € U is k-bounded and (HU)U@{ is a family of harmomc
kernels on X, then there exists a (unique) potential kernel Ky on X with respect to w
such that

Kx —HyKx = (I + KyMy) 'Ky for every U € U.

Proof. Define )
KU: (I+KUMk)_1KU (UEZ/{)
If U,V €U with V C U, we have I + Kka =1+ KUMk; — HVKUMk;; hence

(I + KyM)(Ky + HyKy — Ky) = Ky + Hy Ky — (Ky — Hy Ky My Ky)
= Ky - Ky+ Hy(I+ KyMy)Ky = Ky — Ky + Hy Ky = 0,

ie.,
(64) KV == [N(U - ﬁVIN(U-

By Remark 2.2,6, it therefore suffices to show that every Ky is a potential kernel on U
with respect to W.

So fix U € U and f € B} (U). If V € U with V C U, then (6.4) implies that Hy Ky f <
Ky f with equality if f =0on V. It 0 < h < Ky f such that A is harmonic on U with
respect to (HV)Veu, then ¢g := h + Ky(kh) is harmonic on U and 0 < g < Ky f, hence
g=0,h=0. O

7 Coupling and perturbation in a balayage space

We shall now combine assumptions of Section 3 and Section 6: Let us assume that k is a
Kato function on X (with respect to Kx) and that 7' is an admissible transition kernel
on the balayage space (X, W) such that U is a base of X (in Section 9 we shall get rid
of the last assumption).

For every k-bounded U € U” we define a kernel HY by

(7.1) HE = (I + KyMy) Y (Hy + KyT).
If every U € UT' is k-bounded, we define
(7.2) W= {v|v:X —[0,00] Ls.c., Hv < v for every U € U"'}.

The following result generalizes Corollary 3.4:
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Theorem 7.1. Suppose that there exist s € W and u € BT(X) such that
v:=s+ Kxu € C(X), Tv < wu+ kv,

and, for every U € U,
{Hys < s} U{Ky(u+kv—Tv) >0} =U.

Then every U € U s k-bounded, (_Hg)UeuT is a family of harmonic kernels on X, (X, VV/T)
is a balayage space, and v is strongly W' -superharmonic.

Proof. By Theorem 6.4, every U € U is k-bounded and Hy := (I + KyMy)™'Hy, U € U,
defines a family of harmonic kernels on X. By Proposition 6.5, there exists a potential
kernel Kx with respect to (Hy)yey such that, for every U € U,

Ky :=Kx — HyKx = (I + KyM;) 'Ky.
Fix U € U and let
f=v—Hlv=0v— I+ KyM) " (Hyv + Ky (Tv)).
Then
t:=(I+ KyMy)f =v+ Ky(kv) — Hyv — Ky(Tv) = s — Hys + Ky(u + kv — Tv)

is a positive superharmonic function on U, hence f > 0. By assumption ¢ > 0 and
therefore f > 0. The proof is finished by an application of Theorem 3.2. O

Corollary 7.2. Assume that, for every U € U, the function Kyl s strictly positive on U.
Then the following holds:

1. If 1 € W_and k > T'1, then the assumptions of Theorem 7.1 are satisfied and 1 is
strongly WY -superharmonic.

2. If u € BY(X) such that ¢ := Kxu € C(X) and Tq < u+ kq, then the assumptions
of Theorem 7.1 are satisfied and q is strongly WY -superharmonic.

Proposition 7.3. Suppose that (X, WT) s a balayage space. Then, for every U € U, the

harmonic kernel lflg Jor U with respect to (X, WT) has the following property: For every
¢ € KT(X), the function HE ¢ is the unique function h € KT(X) such that

h+ Ky(kh — Th) = Hye.

Proof (see the proof of Proposition 3.7). 1. Fix ¢ € KT(X) and define h := H%¢. Then
h € K*(X), hence Ky(kh — Th) € Co(U). So

g:=h+ Ky(kh—Th) € K(X), g=¢ onU"
For every V € U with V C U,
h=Hlh=(I+KyMy) " (Hyp+ Ky (Ty))
and therefore

g = h+Ky(kh) + HyKy(kh) — Ky(Th)
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is harmonic on V' (note that ¢ = h on U® implies that T'¢ = Th on V, since 1,71y = 0).
Thus ¢ is harmonic on U, g = Hy .
2. Now let h be any function in £ (X) such that

h+ Ky(kh —Th) = Hy.
Then h = ¢ on U¢ and, for every V € Y with V C U,

(I +KyM)HLL = Hyh+ KUh = HyHyp — HyKy(kh — Th) + KLh
= HU<,0 + KU(Th,) - H\/KU(kh) =h+ Kv(kh),

i.e., H'h = h. Thus h = H} . O

To close this section let us briefly consider the situation discussed at the end of Section 4:
Let (X, W) be the direct sum of balayage spaces (Y,W;), i € I. Let p; be strongly
superharmonic continuous real potentials for (Y, W;), i € I, and let Kx be the potential
kernel on X" composed from the potential kernels Kj;, on the copies of ¥ x {i} of Y. Let
gi; > 0 be Kato functions on Y with respect to K{X,@,, 1,7 € 1,1+ 7, and

T((y,1),) = Y. 9iWewn  (yeYiiel).
JeN{i}
In addition, we now take a Kato function k& with respect to Kx and define
9ii(y) == —k(y,19) (yeY,iel).

Replacing Corollary 3.4 by Theorem 7.1 we of course obtain the same results as at the
end of Section 4 replacing W' by W'

Theorem 7.4. If there exist functions u; € BT (Y') such that Ky, u; € C(Y') and

D
Z ginV\]/juj < U;

jer
for every i € I, then (X, WT) is a balayage space.

Corollary 7.5. Assume that W; = W, and p; = py for every i € I. Then (X, WT) s a
balayage space if there exists a strictly positive function u € BT(Y) and strictly positive
reals b; such that K}, uw € C(Y') and, for all i € I,

(73) Zgijbj < blu/K{f\ﬁlu

jel

Remark 7.6. Suppose that I = {1,...,n}, a;j = ||gijllc < 00 for all i,j and denote
A = (a;5). Assume that w € BY(Y) and a > 0 such that

ol u < w.
Then (7.3) is satisfied if there exists b € R™, b > 0, such that
Ab < ab

which in turn holds if and only if the spectral radius of A is strictly less than .
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Corollary 7.7. Assume that W; = Wi and p; = py_for all i € I and that there exists a
strictly positive bounded function in Wi. Then (X, WT) is a balayage space if (Y, W) is
parabolic and the function Kl%l (max;e; Zjel gij) is continuous and bounded.

Proposition 7.8. Let [ = {1,...,n}. Suppose that (X, WT) is a balayage space and that
U s a relatively compact open subset of Y which is W;-reqular for every 1 <1 < n.

Then, for any choice of functions p1,...,¢, € K(Y), there exist unique functions
hiy..., hy € K(Y) such that, for every 1 < i <n,

h; — ZK)%J_ (gijh;) is Wi-harmonic on U, h; =p; on U°.

Jjel

Moreover, the functions hy, ..., h, are positive, if the functions 1, ..., @, are positive.

8 Further applications on PDE’s

Again let D be a domain in R% and L,,..., L, second order linear partial differential

operators on D leading to harmonic spaces (D, Hp,) (having a base of regular sets) with

Green functions G,. For every 1 < i < n, let u; be a (positive) Radon measure on D

such that G\ € Cy(D) and (Gp,)y’ > 0 on V for every (L;-regular) open subset V' of D.
We want to study the coupled system

j=1

where g;; € B(D) such that g;; > 0 for i # j and GIL‘;‘%W € C(D) for every compact
subset A of D and all i,j € {1,...,n}.

Using X; = D x {i} and the canonical projections 7; : X; — D the direct sum (X, H) of
the spaces (X, Hp, om;), 1 <i < n, is a harmonic space as before. We define a continuous
bounded potential p, a kernel T" and a function £ > 0 on X by

J#i
Then k is a Kato function, T is admissible with respect to K%, and the results of the

preceding section can be applied. In particular, we have a convex cone WT of functions
on X.

Arguing as in Section 5 or applying Proposition 7.8 we obtain the following generaliza-
tion of Theorem 5.1:

Theorem 8.1. Assume that (X, WT) 15 a balayage space. Let U be a relatively compact
open subset of D which is L;-reqular for every 1 < i < n and ¢1,...,p, € C(OU). Then

there exist unique functions hy, ..., h, € C(U) such that
n
7j=1
Further, if o1, ..., ¢, are positive, then hy, ..., h, are positive.

Combined with Theorem 8.1 the following result is similar to [CZ96, Theorem ...] (where
p; = A and all L; are uniformly elliptic):
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Theorem 8.2. Suppose that exists a strictly positive real function s on D such that, for
every 1 <1 < mn, one of the following conditions is satisfied:

1. Z?Zl 9ij < 0 and s is strongly L;-superharmonic.

2. Z?Zl 9ij < 0 and s is L;-superharmonic.

Then (X, WT) is a balayage space.

Proof. Define s € W by s(z,i) = s(x) and fix 1 <4 <n. Then, for every z € D,

(s = Ts)(x,) = —g(x) = 3 g () > 0,

J#
So (X, WT) is a balayage space by Theorem 7.1 (taking u = 0). O

Among various other possible criteria for getting a balayage space (X, WT) let us men-
tion just one, a generalization of Corollary 5.6:

Theorem 8.3. Suppose that Ly = --- = L, =: L. Then (X, WT) 15 a balayage space if
one of the following conditions is satisfied:

1. py =+ = p, =: u and there exist a > 0, a strictly positive Pr(D)-bounded function
u € Cp(D), and strictly positive real numbers by, . .., b, such that

Lu+aup=0 and Zgijbj < ab; for every 1 < i <n.
J#

2. (D, Hy) is parabolic and the functions G3°", i,5 € {1,...,n}, are continuous and
bounded on D.

Remark 8.4. Note that in Theorem 8.2 we necessarily have g; < 0, whereas Theorem 8.3
leaves some range for positive values of g;;.

9 General coupling and perturbation in a balayage
space

As in Section 7 we shall assume that k is a (not necessarily positive) Kato function on X
and that T is an admissible transition kernel (both with respect to the given potential
kernel Kx). The essential difference will be that we shall no longer assume that U7 (as
defined in (3.3)) is a base of X. So our result will be new even if there is no perturbation
at all, ie., if £ = 0.

We shall need the following stability result with respect to increasing limits which is of
interest in itself:

Proposition 9.1. Let U be a base of relatively compact open sets in X and, for every
n € N, let (H})veu be a family of (regular) harmonic kernels on X. Suppose that, for
every U € U, the sequence (HJ})nen is increasing to a kernel Hi®. Then the following are
equivalent:

1. (HZ)veu is a family of harmonic kernels on U.
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2. There exists s € CT(X) such that, for every U € U, the function Hs is continuous
on X and Hs < s on U.

Proof. (1) = (2): By general properties of a family of harmonic kernels (see [BH86]).
(2) = (1): For every n € N U {oo}, define

Wi={v|v:X —[0,00], v Ls.c., Hjjv <wv for every U € U}.

Then -
W =W
n=1

By assumption (2), the function s is strongly WW*°-superharmonic.
IfU,Veldand V CU, then Hj)Hj; = Hy; for every n € N, and hence

HXHE = HE.

Fix a sequence (¢,) in KT(X) which is increasing to 1, fix U € U and f € B} (X) with
compact support. Choose o € R, such that f < as. Then, for every n € N, the function
H}:f is continuous on U and the function Hj(as — f) = sup,, H}({¥m(as — f)) is Ls.c.
on U. So the increasing limits Hf® f and H{P(as — f) are Ls.c. on U. Knowing that their
sum H{P(as) = aH{s is continuous on U we obtain continuity of Hf® f and H{P(as — f)
on U.

Now suppose that f is even continuous, i.e., that f € K*(X). Then we have the
corresponding continuity properties on X. In particular, we see that H*f € K(X).

So we already know that (H{®)yey has the properties (H}), (Hz), (Hs), and (Hj).

It remains to show that (H;) is satisfied. So fix x € X. Assume first that, for every

p € K(X),

lim Hlo(x) = o(z).
Jim, ve(r) = o(z)

Fix ¢; € K*(X) and choose o € Ry, 2 € KT(X) such that p1+ps < as, (p1+p2)(x) =
as(x). Then

liminf HX ¢, (z) > lim Hig(z) = ¢:(z), 1 =1,2
Vigr) v )_VH{B} vei(@) = pj(x) J

and, for every z € V € U,
Hypy(x) + Hy o) < HY (as)(x) < as(x) = 1(x) + p2(2).
Therefore

lim H®p,(z) = o i=1.2.
Jim, vei(r) =gi(x), =1,

Finally, define
r=inf{v € Wt v(z) > 1}, 1o =inf{v € W :v(x) > 1},

and suppose that r; is l.s.c. at 2. Since W™ is contained in W', we have r; < ry.
Moreover, obviously r < s/s(z). Therefore

1 =liminfr(y) < liminfry(y) < liminfs(y)/s(x) =1 = ry(x),

i.e., Ty 1s l.s.c. at x. U
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Suppose next that 7" is an admissible kernel on X such that 7'(z, {z}) = 0 for every
x € X. Moreover, assume that there exists s € CT(X) such that, for every U € U,
Hys+ Kls <sonU.

Let p be a metric for X and define kernels T,,, T’ on X by

Tn(.’L‘, ) = lB(a;,l/n)C T(.’L‘, -), TTIL(.’L‘, ) = lB(w,l/n) T(.’L‘, ) (n eN,z e X)

(where of course B(x,1/n) = {y € X : p(z,y) < 1/n}). Then, for every n € N, the set
U™ = {U el :1yT,1y = 0} is a base of X and we have kernels

K[j;" :KUTn7 H[j;n :HU—FK?}L (UGZ/{TH)
Since obviously, for every V € U,
H‘j;”s = Hys+ K‘z"s < Hys+ K‘zs <s onV,

the function s is strongly W!r-superharmonic and we conclude by Theorem 3.2 that
(H")yeyrn is a family of harmonic kernels and that (X, W) is a balayage space. In
particular, for every n € N and for every U € U, we have a harmonic kernel Hgn solving
the Dirichlet problem with respect to (X, W'n) (see [BH86, Chapter VII]).

Clearly, U™+ c YT and Hg” < Hg"“ for every U € UT»+1. We claim that in fact

(9.1) HI < H™ for every U € U.
Indeed, fix U € U, p € KT(X), and define
t:= Hg"“go.
Then, for every V € U+ with V C U,
HI"t < H "'t =1t,

hence ¢ is superharmonic on U with respect to (X, WT*). Moreover, t € KT(X) and t = ¢
on U¢. Therefore
H 5%0 <t

proving (9.1). In particular, the sequence (W) is decreasing and defining
H} = sup H}"
n
we have

W ={v|v:X = [0,00] Ls.c., Hv < v for every U € U} = ﬂ W,
neN

We now obtain the following extension of Theorem 3.2 (see also Remark 9.4):

Theorem 9.2. Let T be an admissible kernel such that T'(z,{z}) = 0 for every x € X.
Suppose that there exists s € CT(X) such that, for every U € U, Kl's is continuous on U
and Hys + K&s < s on U. Then the following holds:

1. (X, W") is a balayage space and s is strongly W -superharmonic.

2. For every U € U and for every ¢ € KT (X), the Dirichlet solution H{-¢ is the unique
function h € KT(X) such that h — Kh = Hyo.
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3. Ifv is any positive numerical function on X, then v € W' if and only if there exists
a function w € W such that
v=Kiv+w.

Proof. 1. Fix U € U. By Proposition 9.1 it suffices to show that HZ s is continuous on X
and H}'s < s on U. Let us note first that obviously s € WNC(X) and hence Hys € C(X)
and s — Hys € Co(X). Given n € N, we have s € W, So

h, = Hgns <s.

and, by Proposition 3.7,
hn = Hys + K} hy,.

Letting n tend to infinity we obtain that

h:=H}s= lim h, = Hys + K;h < s

n— 00

and hence
thUs—i-Kgs <s onU.

Moreover, K[-h € C(U), since 0 < h < s and K};s is continuous on U by assumption.
Since 0 < Kh < Kl's < s — Hys, we know that K% h tends to zero at the boundary
of U. Thus K h € Cy(U) and h = Hys + K5h € C(X).

2. Fix ¢ € K*(X). Since by Proposition 3.7

Hj o — Ki Hy* o = Hy,
we immediately obtain that
(9:2) Hyp — KjHjp = Hygp.
Conversely, let h be any function in £ (X) such that
(9.3) h — KEh = Hyo.
Let C be the support of h. By (3.2), KZ1¢ € Co(U). Given z € U, the functions
Klle = Kl1e — Hy K e, reV,VcU

are uniformly decreasing to zero as V' decreases to {x}. So we may choose V,, € U such
that v € V,,V, C U and K1 < 7y for some real v < 1. Fix V € U such that z € V. C V,
and define a positive operator N on By(X) by Nf := KL(1¢f). Then the operator [ — N
is invertible.

Applying Hy on both sides of (9.3) we obtain that
Hyh — HyKLh = HyHyp = Hyp = h — KLh,

and therefore
Hyh =h— Kfh+ HyKFh =h — Ki-h = (I — N)h.
On the other hand,
Hyh=HLh — KLHEh = (I — N)HTh
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(using (9.2) for h instead of ¢ and V instead of U). Since I — N is invertible, we conclude
that
h = H{h.
By [BH86, Proposition I11.4.4], this shows that A is harmonic on U with respect to
(X, WT). Thus h = H} .
3. Suppose that w € W such that v = KLv + w. Then, for every n € N,

v = K§"U+K)Tg"v+w

where Kngv + w € W. Thus Proposition 3.9 implies that

UEﬁWT”:WT.

n=1

Assume conversely that v € W!'. Then, for every n € N, there exists a function w, € Wr
such that

Ko 4w, =v.
Defining w € W by

w(z) = f-liminf inf w, (y)
Yy—T n

we finally get that Kiv +w = v. O

We now obtain the results of Theorem 7.1 and Proposition 7.3 not assuming any more
that U* is a base of X,

Theorem 9.3. Let T be an admissible transition kernel and let k be a Kato function
(with respect to Kx). Suppose that there exist s € W and u € BY(X) such that

v:=s+ Kxu € C(X), Tv < wu+ kv,

and, for every U e U, {Hys < s} U{Ky(u+kv—Tv) >0} =U.
Then, for every U € U and for every p € K¥(X), there evists a unique function
h = Hlp € KT(X), such that

h+ Ky(kh — Th) = Hye.

Moreover, (ﬁg)Ueu 15 a family of harmonic kernels on X for which v is strongly super-
harmonic.

Remark 9.4. Note that taking k = 0 we obtain the statements of Theorem 9.2 without
the assumption that T(x,{z}) =0 for z € X.

Proof of Theorem 9.3. Replacing T by the kernel z — T'(z,-) — T'(x,{z})e,, k by the
function z — k(z) — T'(z, {z}) we may assume that T'(z, {z}) = 0 for every z € X.

We now proceed as in the proof of Theorem 7.1: By Theorem 6.4, every U € U is k-
bounded and defining Hyy, U € U, by (6.1) and W by (6.2) we obtain a family (Hy)yey of
harmonic kernels and a balayage space (X, W) such that v is strongly W—superharmonic.

Moreover, by Proposition 6.5, there exists a potential kernel Ky such that, for every
Uel,

(9.4) Ky = Kx — HyKx = (I + KuM;,) "' K.
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We claim that, for every U € U,
Hyv +I~(gv <v onU.
Indeed, defining f := v — Hyv — f(?}v we obtain that
(I+ KyMy)f =v+ Ky(kv) — Hyv — Ky(Tv) = s — Hys + Ky (u + kv — Tv)

is a strictly positive superharmonic function on U and hence f > 0 on U. Clearly,
Kxu € C(X) and hence Kyu € Cy(U). Since |kv| < supv(U) |k| on U, we know that
Kylkv| € Co(U). Therefore the inequality 0 < Tv < u + kv implies that KZv € Co(U)
and hence Kfv € C(U). )

Rei)/lacing (Hu)veu by (HU)UQLL and (Ky)vew by (Ky)vew we get a balayage space
(X, WT) such that v is strongly W -superharmonic.

Moreover, for every ¢ € K (X), the function

Hijp = lim Hii*g
is the unique function h € K£*(X) such that
h— KEh = Hye.
By (6.1) and (9.4), the last equation is equivalent to
h+ Ky(kh —Th) = Hy,

and the proof is finished. O

10 Appendix

In this section we shall first characterize parabolic balayage spaces and then construct a
potential kernel corresponding to a compatible family of potential kernels (Ky)yey (see
Remark 2.2,5).

We shall need the following result on compactness of operators K% which is of indepen-
dent interest:

Lemma 10.1. Suppose that there exists a strictly positive bounded function in VW and
let p € P(X) such that p is harmonic outside a compact set C. Then K% is a compact
operator on By(X).

Proof(cf. also [Han81, p. 504]). Let K := K% and let us fix w € W such that 0 < w < 1.
There exists a > 0 such that p < aw on C' and hence p < aw on X. So p is bounded.
We intend to show first that the subset {Kf : f € B(X),0 < f < 1} of Pp(X) is
equicontinuous. Fix x € X, € > 0, and let L be a compact neighborhood of x. By Dini’s
theorem, there exists an open neighborhood U of x in L such that K1\ (53 <€ on L. For
every f € B(X) such that 0 < f <1,

Kf = f(o)K1lgy + K(1pnoy f) + K(1ye f)

where K1} is continuous (it vanishes if {x} is semi-polar), 0 < K (1yn\(mf) < € on C,
and the functions K (1p.f) are equicontinuous, since they are harmonic on U and bounded
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by p. So there exists a neighborhood V' of z in U such that, for every f € B(X) with
0<f<1,
|IKf—Kf(x)|<3 onV.

Fix a sequence (f,,) in B(X) such that 0 < f,, < 1 for every n € N. By our preceding
considerations, there exist a subsequence (g,) of (f,) such that the sequence (Kg,) is
locally convergent on X. Fix § > 0. There exists a natural ny such that, for all n, m > ny,

|Kg, — Kgm| <dw on C.

Fix n,m > ny. Having Kg, < 0s + Kg,, on C' and knowing that Kg, is harmonic
outside C', we conclude that Kg, < s+ Kg,, on X. Similarly, Kg,, < ds+ Kg, on X.
Thus

|Kgn — Kgm| <0s <6 on X.

O

Theorem 10.2. Suppose that there exists a strictly positive bounded function in VW and
let p € P(X) be strongly superharmonic. Then the following statements are equivalent:

1. (X, W) is parabolic, i.e., for every non-empty compact subset C' of X, there exists
x € C such that liminf,_,, Ry (y) = 0.

2. For every q € P(X) and for every non-empty compact subset C' of X, there exists
z € C such that K11c(x) = 0.

2'. For every non-empty compact subset C of X, there exists x € C such that

3. For every q € Py(X) such that K% is a compact operator on By(X), the operator
I — K% is invertible.

3'. For every compact subset C' of X and for every a > 0, the operator I — a K% M,
on By(X) is invertible.

Proof. (1) = (2): Fix ¢ € P(X) and a non-empty compact C subset of X. There exists
« > 0 such that ag < 1 on C and hence aK%1c < R;,.. By (1), there exists z € C such
that liminf, ,, Ry (y) = 0 and therefore

aK{lo(r) = limaK{1o(y) < liminf Ry (y) =0

y—x y—x

whence K% 1¢(z) = 0.

(2) = (2): Trivial.

(2') = (1): Suppose that there is a non-empty compact C subset of X such that
liminf, ,, Ri.(y) > 0 for every € C. Then there exists a compact neighborhood C’
of C' such that Ry, > 0 on C'. Define ¢' := K% 1¢/. Since p is strongly superharmonic,
we know that ¢’ > 0 on the interior of C' whence 3¢’ > 1 on C for some $ > 0. This
implies that 8¢’ > R;. In particular, ¢ > 0 on C".

(2) = (3): Fix ¢ € Py(X) such that K% is a compact operator on B,(X). Assume
that, for some o > 0, the operator I — aK Y is not invertible and let K = aK%. Then
there exists a function f € By(X) \ {0} such that f = K f, and we may assume without
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loss of generality that |f| < 1 and {f > 0} # (. Since the kernel K is a compact operator
on B,(X), there exists a real £ > 0 and a compact subset C' of {f > £} such that

K1{0<f<g} < 1/2 and Kl{fzg}\c < 6/2.
By (2), there exists x € C such that K1c(z) = 0 and therefore

e< fr) =Kf(x) < K(fl{f>0}(:r) < 8K1{0<f<5}(:r) + Kl{fzg}\c(l‘) < €.

This contradiction shows that I — K is invertible.

(3) = (3'): Trivial, since, for every compact subset C of X, K% M, is the operator K%
for ¢ := K% 1¢ € Py(X) (see Remark 2.2,2) and K% is compact by Lemma 10.1.

(3") = (2): Suppose that there exists a non-empty compact subset C' of X such that
K%1c > 0 on C. Then there exists a real v > 0 such that yK%1c > 1 on C. Defining
q := 7K%1¢ we already noted before that K% = yK% M. In particular, K%1 =¢ > 1
on C' and K%1lce = 0. Therefore (K%)"1 > 1 on C' whence ) ° (K%)"1 = oo on C.
Thus the following lemma implies that (3) does not hold. O

Lemma 10.3. Let K be a bounded kernel on X and v > 0 such that I — oK is invertible
for every 0 < a <. Then (I —yK)™' =37 (vK)".

Proof. Let
B:=sup{a €[0,7]: (I —aK) 'f >0 for every f € Bf (X)}.

By continuity, (I — SK)~'f > 0 for every f € B/ (X). So

o0

(I = BK) ' =) (BK)"

n=0

by [HH88, Lemma 1.3]. If # < 7, then by continuity again, there exists 3 < ' < 7 such
that

(I _ BIK)—I — Z(ﬁ/K)n
n=0
and therfore (I — 8'K)~'f > 0 for every f € B, (X). This contradicts the definition of 3.
Thus 8 = v and the proof is finished. O

Now assume that, for every U € U, we have a potential kernel Ky on U such that
Ky = Ky + Hy Ky whenever U,V € U with V' C U (such a family (Ky)yey is called
compatible). To construct a corresponding potential kernel Kx we shall need the following
lifting property:

Theorem 10.4. Let U be an open subset of X and q a continuous real potential on U
which is harmonic outside a compact subset C' of U. Then there exists a unique p € P(X)

such that p is harmonic outside C' and p — q is harmonic on U.

For harmonic spaces the proof is already fairly technical (see [Her62, Theorem 13.2]),
for balayage spaces it is even more delicate:
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Proof of Theorem 10.4 (cf. [Alb95]). The uniqueness of p is easily established. Indeed, if
p and p' have the desired properties, then p—p’ is harmonic on U and harmonic outside C'.
Therefore p — p' is harmonic on X. Since p — p' is of course P(X)-bounded, we conclude
that p =p'.

To prove the existence let us define

F:={peP:p—qeSU)}.

We intend to show that there is a smallest element in F and that this function inf F has
the desired properties.

1. First we claim that the set F is non-empty: We choose an open set V' and a compact
set L such that C' C V C L C U. By a general approximation property (see [BH86, I.1.2])
there exist ¢, gy € P(X) such that

@2—q@ >q onlV, ¢1 =¢q» on L

Then
po = inf(q + q1,q2) € ST(U).

Moreover, py € ST(L¢). Thus py € W. Since py € C(X) and py < go we obtain that in
fact py € P(X).

Obviously py > ¢ on V' and therefore on U, since ¢ is harmonic outside the subset C'
of U. In addition, py — ¢ = ¢; on V and py — ¢ < ¢; whence py — g € ST (V). Further,
obviously pg —q € ST(U\ C) and py — ¢ < ¢1. Sopy —q € ST(U), pp € F.

2. Obviously F is stable with respect to finite infima, since both P(X) and S*(U) are.

3. Next we show that inf /' is harmonic outside C: Let us fix an open neighborhood
W of C in U. Clearly it suffices to show that inf F is harmonic outside the closure of
W. For the present fix p € F. Then Kilyw —q = (p — q¢) — K& 1we € S(W) and
K1y —q € S(U\ C), hence K1y — q € S(U). Since ¢ € P(U), we obtain that
K% 1y — q > 0. Therefore K51y € F, i.e.

inf F = inf{ K% 1y : p € F}.

Since F is stable with respect to finite infima, the set of all K% 1y, p € F, is decreasingly
filtered and therefore contains a decreasing sequence (p,) converging to inf F. Since all
functions K% 1y, p € F, are harmonic outside W, we conclude in particular that inf F is
harmonic outside W as well.

4. Moreover, inf F — ¢ is harmonic on U: Fix p € F, a compact neighborhood L of C
in U and an open neighborhood W of C such that W is contained in the interior of L.
Choose ¢ € C(X) such that 0 < ¢ <1, ¢ =1 on L and ¢ = 0 on W. Define

p' = inf(Ry, + ¢, p).

Then p' = pon L¢ so p is continuous on L°. Further, the continuity of the functions R,
g, and p on U implies that p' is continuous on U. Therefore p’ is continuous on X.
Clearly, p' € ST(U). Moreover, p' € ST(L*), since p' = p on L and p’ < p. Therefore
p' € W and even p' € P(X), since p' is continuous and p' < p. Since p — g € ST (U), we
obtain that p' — ¢ = inf(R,,,p — q) € ST(U). Thus p’' € F.
Further, Ry, < Ry,,., = Hwp whence p' — ¢ < Hyp. So, for every n € N and for every
V € U with V C W, we obtain that

pn—q > Hy(p, —q) > Hw(p, — q¢) = Hwp, — Hwq > p, — ¢ — Hwyq.
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Since obviously inf F = inf p, = inf p/,, we conclude that
inf F —q > Hy(inf F — q) > inf F — ¢ — Hyq.
Since limy 4y Hyg = 0, this implies that
inf F — ¢ = Hy(inf F — q)

for all V € U with V C U. Thus inf F — ¢ is harmonic on U.
Knowing that inf F—gq is harmonic on U and inf F is harmonic on C'¢ we see immediately
that inf F is continuous on X. Thus inf F € P(X), and the proof is finished. O

Proposition 10.5. Let (Ky)yey be a compatible family of potential kernels. Then there
exists a unique potential kernel Kx on X such that Ky = Kx — HyKx for every U € U.

Proof. Indeed, if f € B, (X) with compact support in some U € U, then Kx f has to be
the lifting of Ky f. So we have uniqueness of Kx.

To prove its existence we may choose a locally finite covering of X by a sequence (U,)
in U and continuous functions ¢, > 0 on X with compact support in U,, n € N, such
that > > ¢, = 1. For every n € N, let p, be the lifting of Ky, ¢, on X so that

(101) Kg(n - HUanfn == KUnML/Jn'
Define o
Ky:=> K%
n=1

Clearly, K is a potential kernel on X. Fix U € U, n € N, and f € B, (X) with compact
support in U. Then ¢, f has compact support in U,NU and our compatibility assumption
implies that Ky (¢, f) is the lifting of Ky, nv(¢nf) on U and Ky, (¢, f) is the lifting of
Ky,nvu(@nf) on U,. By (10.1), K& f is the lifting of Ky, (¢, f) on X. Therefore

K f — Hy KR f = Ky(pnf).

Taking the sum over all n € N we finally conclude that Kx — Hy Kx = Ky. O
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